Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Write a balanced net ionic equation for the principal reaction in solutions of each of the following salts. In each case, identify the Brensted-Lowry acids and bases and the conjugate acid-base pairs. (a) \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) (b) \(\mathrm{NH}_{4} \mathrm{NO}_{3}\) (c) \(\mathrm{NaCl}\) (d) \(\mathrm{ZnCl}_{2}\)

Short Answer

Expert verified
(a) \( \mathrm{CO}_{3}^{2-} + \mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HCO}_{3}^{-} + \mathrm{OH}^{-} \); (b) \( \mathrm{NH}_{4}^{+} + \mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{NH}_{3} + \mathrm{H}_{3} \mathrm{O}^{+} \); (c) No reaction; (d) \( \mathrm{Zn}^{2+} + 2\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{Zn(OH)}^{+} + \mathrm{H}_{3} \mathrm{O}^{+} \).

Step by step solution

01

Dissociate the Salts (Part a)

For \( \mathrm{Na}_{2} \mathrm{CO}_{3} \), it dissociates into \( 2\mathrm{Na}^{+} \) and \( \mathrm{CO}_{3}^{2-} \) in solution. Since \( \mathrm{CO}_{3}^{2-} \) can react with water, we write the net ionic equation for this interaction: \[ \mathrm{CO}_{3}^{2-} + \mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HCO}_{3}^{-} + \mathrm{OH}^{-} \]. Here, \( \mathrm{H}_{2} \mathrm{O} \) acts as a Bronsted-Lowry acid, donating a proton to \( \mathrm{CO}_{3}^{2-} \).
02

Identify Conjugate Pairs (Part a)

In the equation \( \mathrm{CO}_{3}^{2-} + \mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HCO}_{3}^{-} + \mathrm{OH}^{-} \), the conjugate acid-base pairs are \( \mathrm{H}_{2} \mathrm{O} \) and \( \mathrm{OH}^{-} \), and \( \mathrm{CO}_{3}^{2-} \) and \( \mathrm{HCO}_{3}^{-} \). The reaction is a base-acid reaction.
03

Dissociate the Salts (Part b)

\( \mathrm{NH}_{4} \mathrm{NO}_{3} \) dissociates into \( \mathrm{NH}_{4}^{+} \) and \( \mathrm{NO}_{3}^{-} \). The \( \mathrm{NH}_{4}^{+} \) ion can interact with water: \[ \mathrm{NH}_{4}^{+} + \mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{NH}_{3} + \mathrm{H}_{3} \mathrm{O}^{+} \]. \( \mathrm{NH}_{4}^{+} \) is the acid here, donating a proton.
04

Identify Conjugate Pairs (Part b)

In the reaction \( \mathrm{NH}_{4}^{+} + \mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{NH}_{3} + \mathrm{H}_{3} \mathrm{O}^{+} \), the conjugate pairs are \( \mathrm{NH}_{4}^{+} \) and \( \mathrm{NH}_{3} \), \( \mathrm{H}_{2} \mathrm{O} \) and \( \mathrm{H}_{3} \mathrm{O}^{+} \). \( \mathrm{NH}_{4}^{+} \) acts as a Bronsted-Lowry acid.
05

Dissociate the Salts (Part c)

\( \mathrm{NaCl} \) dissociates into \( \mathrm{Na}^{+} \) and \( \mathrm{Cl}^{-} \). Neither ion reacts with water to form another acid or base, so no principal reaction occurs, and both ions are spectator ions.
06

No Reaction for Part c

Since neither \( \mathrm{Na}^{+} \) nor \( \mathrm{Cl}^{-} \) acts as an acid or base, no net ionic equation occurs in this case.
07

Dissociate the Salts (Part d)

\( \mathrm{ZnCl}_{2} \) dissociates into \( \mathrm{Zn}^{2+} \) and \( 2\mathrm{Cl}^{-} \). \( \mathrm{Zn}^{2+} \) can hydrolyze in water, reacting with \( \mathrm{H}_{2} \mathrm{O} \): \[ \mathrm{Zn}^{2+} + 2\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{Zn(OH)}^{+} + \mathrm{H}_{3} \mathrm{O}^{+} \].
08

Identify Conjugate Pairs (Part d)

In the reaction \( \mathrm{Zn}^{2+} + 2\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{Zn(OH)}^{+} + \mathrm{H}_{3} \mathrm{O}^{+} \), the pairs are \( \mathrm{H}_{2} \mathrm{O} \) and \( \mathrm{H}_{3} \mathrm{O}^{+} \), and \( \mathrm{Zn}^{2+} \) with \( \mathrm{Zn(OH)}^{+} \). \( \mathrm{Zn}^{2+} \) acts as a Bronsted-Lowry acid.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Bronsted-Lowry acid
When it comes to acid-base chemistry, a crucial concept is the Bronsted-Lowry theory. This theory describes acids as compounds that donate protons (H\(^+\)) and bases as those that accept protons. For example, in the reaction involving ammonium nitrate, \(\mathrm{NH}_{4}^{+} + \mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{NH}_{3} + \mathrm{H}_{3} \mathrm{O}^{+}\), \(\mathrm{NH}_{4}^{+}\) is the Bronsted-Lowry acid as it donates a proton to water, forming \(\mathrm{NH}_{3}\) and \(\mathrm{H}_{3} \mathrm{O}^{+}\). Similarly, in the reaction with \(\mathrm{ZnCl}_{2}\), \(\mathrm{Zn}^{2+}\) acts as a Bronsted-Lowry acid by donating a proton to water, resulting in zinc hydroxide and hydronium ions.
conjugate acid-base pairs
In every acid-base reaction, conjugate acid-base pairs play a key role. These pairs result from the transfer of a proton from the acid to the base. Once an acid donates its proton, it forms its conjugate base. Conversely, the base that accepts a proton forms its conjugate acid.
For instance:
  • In the reaction \(\mathrm{CO}_{3}^{2-} + \mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HCO}_{3}^{-} + \mathrm{OH}^{-}\), \(\mathrm{CO}_{3}^{2-}\) forms \(\mathrm{HCO}_{3}^{-}\) as its conjugate acid, and water forms \(\mathrm{OH}^{-}\) as its conjugate base.
  • In \(\mathrm{NH}_{4}^{+} + \mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{NH}_{3} + \mathrm{H}_{3} \mathrm{O}^{+}\), \(\mathrm{NH}_{4}^{+}\) becomes \(\mathrm{NH}_{3}\) and water forms \(\mathrm{H}_{3} \mathrm{O}^{+}\) as conjugate acid-base pairs.
Understanding these pairs helps to predict the direction of acid-base equilibrium reactions.
salt dissociation
Salt dissociation is a process where a salt compound breaks down into its component ions when dissolved in water. This step is crucial in determining whether a reaction will occur in an aqueous solution.
  • For example, baking soda, \(\mathrm{Na}_{2} \mathrm{CO}_{3}\), dissociates into \(2\mathrm{Na}^{+}\) and \(\mathrm{CO}_{3}^{2-}\) ions.
  • Ammonium nitrate, \(\mathrm{NH}_{4} \mathrm{NO}_{3}\), separates into \(\mathrm{NH}_{4}^{+}\) and \(\mathrm{NO}_{3}^{-}\).
  • Table salt, \(\mathrm{NaCl}\), breaks into \(\mathrm{Na}^{+}\) and \(\mathrm{Cl}^{-}\), although neither reacts further with water in a noteworthy manner.
Sourcing specific ions from a salt enables reactions like those between \(\mathrm{NH}_{4}^{+}\) and \(\mathrm{H}_{2} \mathrm{O}\) or \(\mathrm{CO}_{3}^{2-}\) with water to occur.
hydrolysis reactions
When ionic compounds dissolve and react with water, this is known as hydrolysis. Hydrolysis reactions are an interaction where either a cation or anion from a salt reacts with water to affect the solution's pH.
For example, the \(\mathrm{CO}_{3}^{2-}\) ion from Sodium carbonate reacts with water in the equation \(\mathrm{CO}_{3}^{2-} + \mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{HCO}_{3}^{-} + \mathrm{OH}^{-}\). This increases the hydroxide ion concentration, making the solution more basic. Similarly, in the case of \(\mathrm{ZnCl}_{2}\), \(\mathrm{Zn}^{2+}\) undergoes hydrolysis: \(\mathrm{Zn}^{2+} + 2\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{Zn(OH)}^{+} + \mathrm{H}_{3} \mathrm{O}^{+}\). This reaction introduces more \(\mathrm{H}_{3} \mathrm{O}^{+}\), making the solution more acidic. Hydrolysis explains why some solutions from salt dissolutions become acidic or basic.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

For each of the following reactions, identify the Lewis acid and the Lewis base: (a) \(2 \mathrm{Cl}^{-}+\mathrm{BeCl}_{2} \longrightarrow \mathrm{BeCl}_{4}^{2-}\) (b) \(\mathrm{Mg}^{2+}+6 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Mg}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}\) (c) \(\mathrm{SO}_{3}+\mathrm{OH}^{-} \longrightarrow \mathrm{HSO}_{4}^{-}\) (d) \(\mathrm{F}^{-}+\mathrm{BF}_{3} \longrightarrow \mathrm{BF}_{4}^{-}\)

Arrange each group of compounds in order of decreasing acid strength. Explain your reasoning- (a) \(\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{\mathrm{S}} \mathrm{Se}\) (b) \(\mathrm{HClO}_{3}, \mathrm{HBrO}_{3}, \mathrm{HIO}_{3}\) (c) \(\mathrm{PH}_{3}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{HCl}\)

For each of the following reactions, identify the Bronsted-Lowry acids and bases and the conjugate acid-base pairs: (a) \(\mathrm{CN}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{OH}^{-}(a q)+\mathrm{HCN}(a q)\) (b) \(\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{HPO}_{4}^{2-}(a q)\) (c) \(\mathrm{HPO}_{4}^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{OH}(a q)+\mathrm{H}_{2} \mathrm{PO}_{4}^{-}(a q)\) (d) \(\mathrm{NH}_{4}^{+}(a q)+\mathrm{NO}_{2}^{-}(a q) \rightleftharpoons \mathrm{HNO}_{2}(a q)+\mathrm{NH}_{3}(a q)\)

The \(\mathrm{pH}\) of milk is \(6.6\) and the \(\mathrm{pH}\) of black coffee is \(5.0\). How many times greater is the \(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\) concentration in coffee?

Which of the following can behave both as a Bronsted-Lowry acid and as a Bronsted-Lowry base? (a) \(\mathrm{HCO}_{3}^{-}\) (b) CN (c) \(\mathrm{H}_{2} \mathrm{O}\) (d) \(\mathrm{H}_{2} \mathrm{CO}_{3}\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free