Chapter 5: Problem 119
An excess of zinc metal is added to \(50.0 \mathrm{~mL}\) of a \(0.100 \mathrm{M} \mathrm{AgNO}_{3}\) solution in a constant-pressure calorimeter like the one pictured in Figure 5.8 . As a result of the reaction \(\mathrm{Zn}(s)+2 \mathrm{Ag}^{+}(a q) \longrightarrow \mathrm{Zn}^{2+}(a q)+2 \mathrm{Ag}(s)\) the temperature rises from \(19.25^{\circ} \mathrm{C}\) to \(22.17^{\circ} \mathrm{C}\). If the heat capacity of the calorimeter is \(98.6 \mathrm{~J} /{ }^{\circ} \mathrm{C},\) calculate the enthalpy change for the given reaction on a molar basis. Assume that the density and specific heat of the solution are the same as those for water, and ignore the specific heats of the metals.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.