Chapter 3: Problem 115
Suppose you are given a cube made of magnesium (Mg) metal of edge length \(1.0 \mathrm{~cm} .\) (a) Calculate the number of \(\mathrm{Mg}\) atoms in the cube. (b) Atoms are spherical in shape. Therefore, the \(\mathrm{Mg}\) atoms in the cube cannot fill all the available space. If only 74 percent of the space inside the cube is taken up by \(\mathrm{Mg}\) atoms, calculate the radius in picometers of an \(\mathrm{Mg}\) atom. (The density of \(\mathrm{Mg}\) is \(1.74 \mathrm{~g} / \mathrm{cm}^{3},\) and the volume of a sphere of radius \(r\) is \(\left.\frac{4}{3} \pi r^{3} .\right)\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.