Chapter 20: Problem 102
In \(2006,\) an ex-KGB agent was murdered in London. The investigation following the agent's death revealed that he was poisoned with the radioactive isotope \({ }^{210} \mathrm{Po}\) which had apparently been added to his food. (a) \({ }^{210} \mathrm{Po}\) is prepared by bombarding \({ }^{209} \mathrm{Bi}\) with neutrons. Write an equation for the reaction. (b) The half-life of \({ }^{210} \mathrm{Po}\) is 138 days. It decays by \(\alpha\) particle emission. Write the equation for the decay process. (c) Calculate the energy of an emitted \(\alpha\) particle. Assume both the parent and daughter nuclei have zero kinetic energy. The atomic masses of \({ }^{210} \mathrm{Po},{ }^{206} \mathrm{~Pb},\) and \({ }_{2}^{4} \alpha\) are 209.98286 \(205.97444,\) and 4.00150 amu, respectively. (d) Ingestion of \(1 \mu \mathrm{g}\) of \({ }^{210}\) Po could prove fatal. What is the total energy released by this quantity of \({ }^{210}\) Po over the course of 138 days?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.