Chapter 20: Problem 101
The quantity of a radioactive material is often measured by its activity (measured in curies or millicuries) rather than by its mass. In a brain scan procedure, a \(70-\mathrm{kg}\) patient is injected with \(20.0 \mathrm{mCi}\) of \({ }^{99 \mathrm{~m}} \mathrm{Tc},\) which decays by emitting \(\gamma\) -ray photons with a half-life of \(6.0 \mathrm{~h}\). Given that the \(\mathrm{RBE}\) of these photons is 0.98 and only two-thirds of the photons are absorbed by the body, calculate the rem dose received by the patient. Assume all the \({ }^{99 \mathrm{~m}}\) Tc nuclei decay while in the body. The energy of a \(\gamma\) -ray photon is \(2.29 \times 10^{-14} \mathrm{~J}\).
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.