Chapter 2: Problem 119
In the second footnote on page 42 it was pointed out that mass and energy are alternate aspects of a single entity called mass-energy. The relationship between these two physical quantities is Einstein's equation, \(E=m c^{2}\), where \(E\) is energy, \(m\) is mass, and \(c\) is the speed of light. In a combustion experiment, it was found that \(12.096 \mathrm{~g}\) of hydrogen molecules combined with \(96.000 \mathrm{~g}\) of oxygen molecules to form water and released \(1.715 \times 10^{3} \mathrm{~kJ}\) of heat. Use Einstein's equation to calculate the corresponding mass change in this process, and comment on whether or not the law of conservation of mass holds for ordinary chemical processes.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.