Chapter 16: Problem 41
Calculate the concentration of \(\mathrm{HNO}_{3}\) in a solution at \(25^{\circ} \mathrm{C}\) that has a \(\mathrm{pH}\) of \((\mathrm{a}) 4.21,(\mathrm{~b}) 3.55,\) and \((\mathrm{c}) 0.98\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.
Hydrogen Ion Concentration
The concentration of hydrogen ions in any solution is measured in moles per liter (mol/L). This measurement tells how many moles of hydrogen ions are there in one liter of the solution.
To find the hydrogen ion concentration from pH, we rely on the formula: \[ \text{H}^+ = 10^{-\text{pH}} \]Using this formula, you can easily calculate the hydrogen ion concentration once you know the pH. This is the antilogarithm of the negative pH value, representing the concentration of hydrogen ions in the solution.
- High \(\text{H}^+\) concentration = low pH = highly acidic.
- Low \(\text{H}^+\) concentration = high pH = less acidic.
Strong Acids
Examples of strong acids include hydrochloric acid (HCl), sulfuric acid (H\(_2\)SO\(_4\)), and nitric acid (HNO\(_3\)). For any strong acid like HNO\(_3\), the concentration of the acid is equal to the concentration of hydrogen ions resulting in the solution.
For instance, if you have 1 mol/L of HNO\(_3\) in the solution, it will produce 1 mol/L of \(\text{H}^+\) ions because it dissociates fully. This makes calculations straightforward since the \(\text{H}^+\) concentration directly reflects the acid concentration.
HNO3 Concentration
As a strong acid, HNO\(_3\) fully dissociates in water. This property ensures that the concentration of HNO\(_3\) initially present is the same as the hydrogen ion concentration in the solution.
Understanding HNO\(_3\) concentration allows for straightforward pH calculations. The concentration of HNO\(_3\) can be directly obtained from the pH by applying the formula: \[ \text{Concentration of HNO}_3 = 10^{-\text{pH}} \]In practical situations, accurate pH measurements can offer reliable insights into how much HNO\(_3\) is present in a solution.
- Measure the pH of the solution.
- Apply the antilog formula to find the concentration.
- Know that the calculated H\(_3\)O\(^+\) concentration equals the HNO\(_3\) concentration.
Logarithmic Functions
This scaling is achieved by using the negative logarithm. The operation is essential for transforming the hydrogen ion concentration into a simpler number that represents the acidity of the solution.
Understanding logarithms involves getting familiar with two key concepts: logarithm (log) and antilogarithm (antilog). The logarithm represents the pH:\[ \text{pH} = -\log[\text{H}^+] \]The antilogarithm is used to reverse the process:\[ [\text{H}^+] = 10^{-\text{pH}} \]These functions are invaluable tools for chemists, helping them manipulate and understand acid concentrations easily.
- Logarithms convert large ranges into smaller scopes.
- Antilogarithms revert that process to calculate concentrations.
- Main tools used for pH and acidity related calculations.