Chapter 15: Problem 105
At \(1024^{\circ} \mathrm{C},\) the pressure of oxygen gas from the decomposition of copper(II) oxide \((\mathrm{CuO})\) is \(0.49 \mathrm{~atm}:\) $$4 \mathrm{CuO}(s) \rightleftarrows 2 \mathrm{Cu}_{2} \mathrm{O}(s)+\mathrm{O}_{2}(g)$$ (a) What is \(K_{P}\) for the reaction? (b) Calculate the fraction of \(\mathrm{CuO}\) that will decompose if \(0.16 \mathrm{~mol}\) of it is placed in a 2.0 -L flask at \(1024^{\circ} \mathrm{C}\). (c) What would the fraction be if a 1.0 -mol sample of \(\mathrm{CuO}\) were used? (d) What is the smallest amount of \(\mathrm{CuO}\) (in moles) that would establish the equilibrium?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.