Chapter 15: Problem 101
Consider the reaction between \(\mathrm{NO}_{2}\) and \(\mathrm{N}_{2} \mathrm{O}_{4}\) in a closed container: $$ \mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftarrows 2 \mathrm{NO}_{2}(g) $$ Initially, \(1 \mathrm{~mol}\) of \(\mathrm{N}_{2} \mathrm{O}_{4}\) is present. At equilibrium, \(x \mathrm{~mol}\) of \(\mathrm{N}_{2} \mathrm{O}_{4}\) has dissociated to form \(\mathrm{NO}_{2}\). (a) Derive an expression for \(K_{P}\) in terms of \(x\) and \(P\), the total pressure. (b) How does the expression in part (a) help you predict the shift in equilibrium due to an increase in \(P ?\) Does your prediction agree with Le Châtelier's principle?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.