Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 111

A quantity of \(6.75 \mathrm{~g}\) of \(\mathrm{SO}_{2} \mathrm{Cl}_{2}\) was placed in a \(2.00-\mathrm{L}\) flask. At \(648 \mathrm{~K},\) there is \(0.0345 \mathrm{~mol}\) of \(\mathrm{SO}_{2}\) present. Calculate \(K_{\mathrm{c}}\) for the reaction: $$\mathrm{SO}_{2} \mathrm{Cl}_{2}(g) \rightleftarrows \mathrm{SO}_{2}(g)+\mathrm{Cl}_{2}(g)$$

Problem 112

Industrial production of ammonia from hydrogen and nitrogen gases is done using the Haber process. \(\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftarrows 2 \mathrm{NH}_{3}(g) \quad \Delta H^{\circ}=-92.6 \mathrm{~kJ} / \mathrm{mol}\) Based on your knowledge of the principles of equilibrium, what would the optimal temperature and pressure conditions be for production of ammonia on a large scale? Are the same conditions also optimal from the standpoint of kinetics? Explain.

Problem 113

The equilibrium constant \(\left(K_{P}\right)\) for the formation of the air pollutant nitric oxide (NO) in an automobile engine $$\begin{array}{l} \text { at } 530^{\circ} \mathrm{C} \text { is } 2.9 \times 10^{-11}: \\ \qquad \mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftarrows 2 \mathrm{NO}(g) \end{array}$$ (a) Calculate the partial pressure of NO under these conditions if the partial pressures of nitrogen and oxygen are 3.0 and 0.012 atm, respectively. (b) Repeat the calculation for atmospheric conditions where the partial pressures of nitrogen and oxygen are 0.78 and 0.21 atm and the temperature is \(25^{\circ} \mathrm{C}\). (The \(K_{P}\) for the reaction is \(4.0 \times 10^{-31}\) at this temperature.) (c) Is the formation of NO endothermic or exothermic? (d) What natural phenomenon promotes the formation of NO? Why?

Problem 114

Consider the reaction: $$ 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightleftarrows 2 \mathrm{NO}_{2}(g) $$ At \(430^{\circ} \mathrm{C},\) an equilibrium mixture consists of \(0.020 \mathrm{~mol}\) of \(\mathrm{O}_{2}, 0.040 \mathrm{~mol}\) of \(\mathrm{NO},\) and \(0.96 \mathrm{~mol}\) of \(\mathrm{NO}_{2} .\) Calculate \(K_{P}\) for the reaction, given that the total pressure is \(0.20 \mathrm{~atm}\).

Problem 115

The formation of \(\mathrm{SO}_{3}\) from \(\mathrm{SO}_{2}\) and \(\mathrm{O}_{2}\) is an intermediate step in the manufacture of sulfuric acid, and it is also responsible for the acid rain phenomenon. The equilibrium constant \(K_{P}\) for the reaction $$2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightleftarrows 2 \mathrm{SO}_{3}(g)$$ is 0.13 at \(830^{\circ} \mathrm{C}\). In one experiment, \(2.00 \mathrm{~mol} \mathrm{SO}_{2}\) and \(2.00 \mathrm{~mol} \mathrm{O}_{2}\) were initially present in a flask. What must the total pressure at equilibrium be to have an 80.0 percent yield of \(\mathrm{SO}_{3} ?\)

Problem 117

The vapor pressure of mercury is \(0.0020 \mathrm{mmHg}\) at \(26^{\circ} \mathrm{C}\). (a) Calculate \(K_{\mathrm{c}}\) and \(K_{P}\) for the process \(\mathrm{Hg}(l)\) \(\Longrightarrow \mathrm{Hg}(g)\) (b) A chemist breaks a thermometer and spills mercury onto the floor of a laboratory measuring \(6.1 \mathrm{~m}\) long, \(5.3 \mathrm{~m}\) wide, and \(3.1 \mathrm{~m}\) high. Calculate the mass of mercury (in grams) vaporized at equilibrium and the concentration of mercury vapor (in \(\mathrm{mg} / \mathrm{m}^{3}\) ). Does this concentration exceed the safety limit of \(0.05 \mathrm{mg} / \mathrm{m}^{3}\) ? (Ignore the volume of furniture and other objects in the laboratory.)

Problem 118

Both \(\mathrm{Mg}^{2+}\) and \(\mathrm{Ca}^{2+}\) are important biological ions. One of their functions is to bind to the phosphate group of ATP molecules or amino acids of proteins. For Group 2 A metals in general, the equilibrium constant for binding to the anions increases in the order \(\mathrm{Ba}^{2+}<\mathrm{Sr}^{2+}\) \(<\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}\). What property of the Group \(2 \mathrm{~A}\) metal cations might account for this trend?

Problem 119

Photosynthesis can be represented by: $$\begin{aligned} 6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l) & \rightleftarrows \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)+6 \mathrm{O}_{2}(g) \\ \Delta H^{\circ} &=2801 \mathrm{~kJ} / \mathrm{mol} \end{aligned}$$ Explain how the equilibrium would be affected by the following changes: (a) partial pressure of \(\mathrm{CO}_{2}\) is increased, (b) \(\mathrm{O}_{2}\) is removed from the mixture, (c) \(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\) (glucose) is removed from the mixture, (d) more water is added, (e) a catalyst is added, (f) temperature is decreased.

Problem 120

Consider the decomposition of ammonium chloride at a certain temperature: $$\mathrm{NH}_{4} \mathrm{Cl}(s) \rightleftarrows \mathrm{NH}_{3}(g)+\mathrm{HCl}(g)$$ Calculate the equilibrium constant \(K_{P}\) if the total pressure is \(2.2 \mathrm{~atm}\) at that temperature.

Problem 121

Eggshells are composed mostly of calcium carbonate \(\left(\mathrm{CaCO}_{3}\right)\) formed by the reaction: $$\mathrm{Ca}^{2+}(a q)+\mathrm{CO}_{3}^{2-}(a q) \rightleftarrows \mathrm{CaCO}_{3}(s)$$ The carbonate ions are supplied by carbon dioxide produced as a result of metabolism. Explain why eggshells are thinner in the summer when the rate of panting by chickens is greater. Suggest a remedy for this situation.

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Chemistry Textbooks