Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Problem 100

The thermal decomposition of \(\mathrm{N}_{2} \mathrm{O}_{5}\) obeys first-order kinetics. At \(45^{\circ} \mathrm{C}\), a plot of \(\ln \left[\mathrm{N}_{2} \mathrm{O}_{5}\right]\) versus \(t\) gives a slope of \(-6.18 \times 10^{-4} \mathrm{~min}^{-1}\). What is the half-life of the reaction?

Problem 101

When a mixture of methane and bromine is exposed to light, the following reaction occurs slowly: $$ \mathrm{CH}_{4}(g)+\mathrm{Br}_{2}(g) \longrightarrow \mathrm{CH}_{3} \mathrm{Br}(g)+\mathrm{HBr}(g) $$ Suggest a reasonable mechanism for this reaction. (Hint: Bromine vapor is deep red; methane is colorless.)

Problem 102

The rate of the reaction between \(\mathrm{H}_{2}\) and \(\mathrm{I}_{2}\) to form \(\mathrm{HI}\) increases with the intensity of visible light. (a) Explain why this fact supports a two-step mechanism. \(\left(\mathrm{I}_{2}\right.\) vapor is purple.) (b) Explain why the visible light has no effect on the formation of \(\mathrm{H}\) atoms.

Problem 103

The rate constant for the gaseous reaction: $$ \mathrm{H}_{2}(g)+\mathrm{I}_{2}(g) \longrightarrow 2 \mathrm{HI}(g) $$ is \(2.42 \times 10^{-2} / M \cdot \mathrm{s}\) at \(400^{\circ} \mathrm{C}\). Initially an equimolar sample of \(\mathrm{H}_{2}\) and \(\mathrm{I}_{2}\) is placed in a vessel at \(400^{\circ} \mathrm{C},\) and the total pressure is \(1658 \mathrm{mmHg}\). (a) What is the initial rate ( \(M / \mathrm{min}\) ) of formation of HI? (b) Determine the rate of formation of HI and the concentration of HI (in molarity) after \(10.0 \mathrm{~min}\).

Problem 104

A gas mixture containing \(\mathrm{CH}_{3}\) fragments, \(\mathrm{C}_{2} \mathrm{H}_{6}\) molecules, and an inert gas (He) was prepared at \(600 \mathrm{~K}\) with a total pressure of 5.42 atm. The elementary reaction $$ \mathrm{CH}_{3}+\mathrm{C}_{2} \mathrm{H}_{6} \longrightarrow \mathrm{CH}_{4}+\mathrm{C}_{2} \mathrm{H}_{5} $$ has a second-order rate constant of \(3.0 \times 10^{4} / M \cdot \mathrm{s} .\) Given that the mole fractions of \(\mathrm{CH}_{3}\) and \(\mathrm{C}_{2} \mathrm{H}_{6}\) are 0.00093 and 0.00077 , respectively, calculate the initial rate of the reaction at this temperature.

Problem 105

Consider the following elementary step: $$ \mathrm{X}+2 \mathrm{Y} \longrightarrow \mathrm{XY}_{2} $$ (a) Write a rate law for this reaction. (b) If the initial rate of formation of \(\mathrm{XY}_{2}\) is \(3.8 \times 10^{-3} \mathrm{M} / \mathrm{s}\) and the initial concentrations of \(\mathrm{X}\) and \(\mathrm{Y}\) are \(0.26 \mathrm{M}\) and \(0.88 \mathrm{M}\), respectively, what is the rate constant of the reaction?

Problem 106

The following scheme in which \(\mathrm{A}\) is converted to \(\mathrm{B}\), which is then converted to \(\mathrm{C}\), is known as a consecutive reaction: \(\mathrm{A} \longrightarrow \mathrm{B} \longrightarrow \mathrm{C}\) Assuming that both steps are first order, sketch on the same graph the variations of \([\mathrm{A}],[\mathrm{B}],\) and \([\mathrm{C}]\) with time.

Problem 107

(a) Consider two reactions, \(\mathrm{A}\) and \(\mathrm{B}\). If the rate constant for reaction B increases by a larger factor than that of reaction A when the temperature is increased from \(T_{1}\) to \(T_{2},\) what can you conclude about the relative values of the activation energies of the two reactions? (b) If a bimolecular reaction occurs every time an \(\mathrm{A}\) and a \(\mathrm{B}\) molecule collide, what can you say about the orientation factor and activation energy of the reaction?

Problem 108

The rate law for the following reaction: $$ \mathrm{CO}(g)+\mathrm{NO}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+\mathrm{NO}(g) $$ is rate \(=k\left[\mathrm{NO}_{2}\right]^{2}\). Suggest a plausible mechanism for the reaction, given that the unstable species \(\mathrm{NO}_{3}\) is an intermediate.

Problem 109

Consider the following elementary steps for a consecutive reaction: $$ \mathrm{A} \stackrel{k_{1}}{\longrightarrow} \mathrm{B} \stackrel{k_{2}}{\longrightarrow} \mathrm{C} $$ (a) Write an expression for the rate of change of \(\mathrm{B}\). (b) Derive an expression for the concentration of B under "steady-state" conditions; that is, when \(\mathrm{B}\) is decomposing to \(\mathrm{C}\) at the same rate as it is formed from \(\mathrm{A}\).

Access millions of textbook solutions in one place

  • Access over 3 million high quality textbook solutions
  • Access our popular flashcard, quiz, mock-exam and notes features
  • Access our smart AI features to upgrade your learning
Get Vaia Premium now
Access millions of textbook solutions in one place

Recommended explanations on Chemistry Textbooks