Problem 74
following reactions could be followed: (a) \(\mathrm{CaCO}_{3}(s) \longrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(g)\) (b) \(\mathrm{Cl}_{2}(g)+2 \mathrm{Br}^{-}(a q) \longrightarrow \mathrm{Br}_{2}(a q)+2 \mathrm{Cl}^{-}(a q)\) (c) \(\mathrm{C}_{2} \mathrm{H}_{6}(g) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}(g)+\mathrm{H}_{2}(g)\) (d) \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}(g)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow\) \(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(a q)+\mathrm{H}^{+}(a q)+\mathrm{I}^{-}(a q)\)
Problem 75
"The rate constant for the reaction: $$ \mathrm{NO}_{2}(g)+\mathrm{CO}(g) \longrightarrow \mathrm{NO}(g)+\mathrm{CO}_{2}(g) $$ is \(1.64 \times 10^{-6} / M \cdot \mathrm{s} . "\) What is incomplete about this statement?
Problem 80
The following data were collected for the reaction between hydrogen and nitric oxide at \(700^{\circ} \mathrm{C}\) : $$ 2 \mathrm{H}_{2}(g)+2 \mathrm{NO}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(g)+\mathrm{N}_{2}(g) $$ $$ \begin{array}{cccc} \text { Experiment } & {\left[\mathrm{H}_{2}\right](M)} & {[\mathrm{NO}](M)} & \text { Initial Rate }(M / \mathrm{s}) \\ \hline 1 & 0.010 & 0.025 & 2.4 \times 10^{-6} \\ 2 & 0.0050 & 0.025 & 1.2 \times 10^{-6} \\ 3 & 0.010 & 0.0125 & 0.60 \times 10^{-6} \end{array} $$ (a) Determine the order of the reaction. (b) Calculate the rate constant. (c) Suggest a plausible mechanism that is consistent with the rate law. (Hint: Assume that the oxygen atom is the intermediate.)
Problem 81
When methyl phosphate is heated in acid solution, it reacts with water: $$ \mathrm{CH}_{3} \mathrm{OPO}_{3} \mathrm{H}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}_{3} \mathrm{PO}_{4} $$ If the reaction is carried out in water enriched with \({ }^{18} \mathrm{O},\) the oxygen- 18 isotope is found in the phosphoric acid product but not in the methanol. What does this tell us about the mechanism of the reaction?
Problem 82
The rate of the reaction: $$ \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{CH}_{3} \mathrm{COOH}(a q)+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(a q) $$ shows first-order characteristics-that is, rate \(=\) \(k\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]\) -even though this is a second-order reaction (first order in \(\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\) and first order in \(\mathrm{H}_{2} \mathrm{O}\) ). Explain.
Problem 83
Explain why most metals used in catalysis are transition metals.
Problem 84
The reaction \(2 \mathrm{~A}+3 \mathrm{~B} \longrightarrow \mathrm{C}\) is first order with respect to \(\mathrm{A}\) and \(\mathrm{B}\). When the initial concentrations are \([\mathrm{A}]=1.6 \times 10^{-2} M\) and \([\mathrm{B}]=2.4 \times 10^{-3} M,\) the rate is \(4.1 \times 10^{-4} \mathrm{M} / \mathrm{s} .\) Calculate the rate constant of the reaction.
Problem 85
The bromination of acetone is acid-catalyzed: $$ \begin{array}{c} \text { catalyst } \\ \mathrm{CH}_{3} \mathrm{COCH}_{3}+\mathrm{Br}_{2} \stackrel{\mathrm{H}^{+}}{\longrightarrow} \mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{Br}+\mathrm{H}^{+}+\mathrm{Br}^{-} \end{array} $$ The rate of disappearance of bromine was measured for several different concentrations of acetone, bromine, and \(\mathrm{H}^{+}\) ions at a certain temperature: $$ \begin{array}{ccccc} & {\left[\mathbf{C H}_{3} \mathbf{C O C H}_{3}\right]} & {\left[\mathbf{B r}_{2}\right]} & {\left[\mathbf{H}^{+}\right]} & \text {Rate of Disappearance } \\ & (\boldsymbol{M}) & (\boldsymbol{M}) & (\boldsymbol{M}) & \text { of } \mathbf{B r}_{2}(M / \mathbf{s}) \\ \hline(1) & 0.30 & 0.050 & 0.050 & 5.7 \times 10^{-5} \\ (2) & 0.30 & 0.10 & 0.050 & 5.7 \times 10^{-5} \\ (3) & 0.30 & 0.050 & 0.10 & 1.2 \times 10^{-4} \\ (4) & 0.40 & 0.050 & 0.20 & 3.1 \times 10^{-4} \\ (5) & 0.40 & 0.050 & 0.050 & 7.6 \times 10^{-5} \end{array} $$ (a) What is the rate law for the reaction? (b) Determine the rate constant. (c) The following mechanism has been proposed for the reaction: Show that the rate law deduced from the mechanism is consistent with that shown in part (a).
Problem 86
The decomposition of \(\mathrm{N}_{2} \mathrm{O}\) to \(\mathrm{N}_{2}\) and \(\mathrm{O}_{2}\) is a first-order reaction. At \(730^{\circ} \mathrm{C}\) the half-life of the reaction is \(3.58 \times 10^{3}\) min. If the initial pressure of \(\mathrm{N}_{2} \mathrm{O}\) is 2.10 atm at \(730^{\circ} \mathrm{C},\) calculate the total gas pressure after one half-life. Assume that the volume remains constant.
Problem 87
The reaction \(\mathrm{S}_{2} \mathrm{O}_{8}^{2-}+2 \mathrm{I}^{-} \longrightarrow 2 \mathrm{SO}_{4}^{2-}+\mathrm{I}_{2}\) proceeds slowly in aqueous solution, but it can be catalyzed by the \(\mathrm{Fe}^{3+}\) ion. Given that \(\mathrm{Fe}^{3+}\) can oxidize \(\mathrm{I}^{-}\) and \(\mathrm{Fe}^{2+}\) can reduce \(\mathrm{S}_{2} \mathrm{O}_{8}^{2-},\) write a plausible two-step mechanism for this reaction. Explain why the uncatalyzed reaction is slow.