Chapter 13: Problem 149
A protein has been isolated as a salt with the formula \(\mathrm{Na}_{20} \mathrm{P}\) (this notation means that there are \(20 \mathrm{Na}^{+}\) ions associated with a negatively charged protein \(\mathrm{P}^{20-}\) ). The osmotic pressure of a \(10.0-\mathrm{mL}\) solution containing \(0.225 \mathrm{~g}\) of the protein is 0.257 atm at \(25.0^{\circ} \mathrm{C}\). (a) Calculate the molar mass of the protein from these data. (b) Calculate the actual molar mass of the protein.
Short Answer
Step by step solution
Understanding Osmotic Pressure
Calculate Molarity
Determine Number of Moles
Calculate Molar Mass of the Protein
Determine Actual Molar Mass
Final Actual Molar Mass
Unlock Step-by-Step Solutions & Ace Your Exams!
-
Full Textbook Solutions
Get detailed explanations and key concepts
-
Unlimited Al creation
Al flashcards, explanations, exams and more...
-
Ads-free access
To over 500 millions flashcards
-
Money-back guarantee
We refund you if you fail your exam.
Over 30 million students worldwide already upgrade their learning with Vaia!
Key Concepts
These are the key concepts you need to understand to accurately answer the question.