Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The men's world record for running a mile outdoors (as of 1999 ) is 3 min 43.13 s. At this rate, how long would it take to run a \(2 \mathrm{~km}\) race \((1 \mathrm{mi}=1609 \mathrm{~m})\) ?

Short Answer

Expert verified
4 minutes and 37.53 seconds

Step by step solution

01

Convert the World Record Time to Seconds

Firstly, we convert the record time of 3 minutes and 43.13 seconds into total seconds. We do this because calculations will be easier in one unit.\[ 3 \text{ min} = 3 \times 60 = 180 \text{ seconds} \]Adding 43.13 seconds to this, we get:\[ 180 + 43.13 = 223.13 \text{ seconds} \]
02

Calculate Speed in Meters per Second

Next, we calculate the speed in meters per second using the world record time. The distance for a mile is 1609 meters.\[ \text{Speed} = \frac{\text{Distance}}{\text{Time}} = \frac{1609 \, \text{m}}{223.13 \, \text{s}} \approx 7.21 \, \text{m/s} \]
03

Calculate Time for a 2 km (2000 m) Race

Now, using the speed calculated in Step 2, we determine the time it would take to run 2000 meters.\[ \text{Time} = \frac{\text{Distance}}{\text{Speed}} = \frac{2000 \, \text{m}}{7.21 \, \text{m/s}} \approx 277.53 \, \text{seconds} \]
04

Convert Total Time Back to Minutes and Seconds

Finally, we convert the time from seconds back to minutes and seconds for better understanding.\[ 277.53 \, \text{seconds} = 4 \, \text{minutes} \, 37.53 \, \text{seconds} \]Thus, it would take approximately 4 minutes and 37.53 seconds to run 2 km at the world record pace.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Speed Calculation
Speed is the measure of how fast something moves over a specific distance. To calculate speed, you use the formula:
  • Speed = Distance / Time
In the original exercise, the speed of the runner is calculated after converting the running time for a mile into seconds. The runner covers a distance of 1609 meters in approximately 223.13 seconds, hence the speed is found to be approximately 7.21 meters per second.
Understanding speed calculation is crucial to solving problems where distance and time are involved, as it helps in determining how long it will take to cover a new distance given a constant speed.
Distance Conversion
Distance conversion involves changing the units of distance to align with units of time, so that calculations can become more cohesive. In this context, converting between miles and kilometers or meters is fundamental.
  • 1 mile is equal to 1609 meters.
The original exercise specifically provides the length of a mile in meters. This allows for a seamless transition into calculating speed in meters per second rather than miles per minute or hour, making further calculations more straightforward since speed and time units are aligned.
Time Calculation
Time calculation is about determining the amount of time needed to cover a distance at a known speed. The formula for this calculation is:
  • Time = Distance ÷ Speed
In the exercise, after finding the speed in meters per second, the time it takes to complete a 2-kilometer race is calculated using this formula. With a speed of 7.21 meters per second, it's calculated that a 2000-meter distance is covered in approximately 277.53 seconds.
This highlights the importance of accurately converting and calculating time to align with given units of speed and distance.
Unit Conversion
Unit conversion is the process of converting a given unit into a different unit without changing the actual quantity involved. This exercise requires converting minutes to seconds and meters to kilometers, ensuring uniformity in calculations:
  • To convert minutes to seconds, multiply the number of minutes by 60.
  • For distances, remember the equivalence: 1 km = 1000 m.
By using these basic conversion principles, the exercise becomes much easier to solve, as every calculation step remains consistent in its use of units. Proper understanding and application of unit conversions help avoid common calculation mistakes in multiple-step problems.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

The average speed of helium at \(25^{\circ} \mathrm{C}\) is \(1255 \mathrm{~m} / \mathrm{s}\). Convert this speed to miles per hour (mph).

Fluoridation is the process of adding fluorine compounds to drinking water to help fight tooth decay. A concentration of 1 ppm of fluorine is sufficient for the purpose ( 1 ppm means one part per million, or \(1 \mathrm{~g}\) of fluorine per 1 million g of water). The compound normally chosen for fluoridation is sodium fluoride, which is also added to some toothpastes. Calculate the quantity of sodium fluoride in kilograms needed per year for a city of 50,000 people if the daily consumption of water per person is 150 gal. What percent of the sodium fluoride is "wasted" if each person uses only 6.0 \(\mathrm{L}\) of water a day for drinking and cooking (sodium fluoride is 45.0 percent fluorine by mass; \(1 \mathrm{gal}=3.79 \mathrm{~L} ;\) 1 year \(=365\) days; 1 ton \(=2000 \mathrm{lb} ; 1 \mathrm{lb}=453.6 \mathrm{~g}\); density of water \(=1.0 \mathrm{~g} / \mathrm{mL}\) )?

Suppose that a new temperature scale has been devised on which the melting point of ethanol \(\left(-117.3^{\circ} \mathrm{C}\right)\) and the boiling point of ethanol \(\left(78.3^{\circ} \mathrm{C}\right)\) are taken as \(0^{\circ} \mathrm{S}\) and \(100^{\circ} \mathrm{S},\) respectively, where \(\mathrm{S}\) is the symbol for the new temperature scale. Derive an equation relating a reading on this scale to a reading on the Celsius scale. What would this thermometer read at \(25^{\circ} \mathrm{C} ?\)

Which of the following statements describe physical properties and which describe chemical properties? (a) Iron has a tendency to rust. (b) Rainwater in industrialized regions tends to be acidic. (c) Hemoglobin molecules have a red color. (d) When a glass of water is left out in the sun, the water gradually disappears. (e) Carbon dioxide in air is converted to more complex molecules by plants during photosynthesis.

Carry out the following operations as if they were calculations of experimental results, and express each answer in the correct units with the correct number of significant figures: (a) \(7.310 \mathrm{~km} \div 5.70 \mathrm{~km}\) (b) \(\left(3.26 \times 10^{-3} \mathrm{mg}\right)-\left(7.88 \times 10^{-5} \mathrm{mg}\right)\) (c) \(\left(4.02 \times 10^{6} \mathrm{dm}\right)+\left(7.74 \times 10^{7} \mathrm{dm}\right)\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free