Chapter 9: Problem 82
Show how a \(d_{x z}\) atomic orbital and a \(p_{z}\) atomic orbital combine to form a bonding molecular orbital. Assume the \(x\) -axis is the internuclear axis. Is a \(\sigma\) or a \(\pi\) molecular orbital formed? Explain.
Chapter 9: Problem 82
Show how a \(d_{x z}\) atomic orbital and a \(p_{z}\) atomic orbital combine to form a bonding molecular orbital. Assume the \(x\) -axis is the internuclear axis. Is a \(\sigma\) or a \(\pi\) molecular orbital formed? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeWhy does the molecular orbital model do a better job in explaining the bonding in \(\mathrm{NO}^{-}\) and \(\mathrm{NO}\) the hybrid orbital model?
The oxyanion of nitrogen in which it has the highest oxidation state is the nitrate ion \(\left(\mathrm{NO}_{3}^{-}\right) .\) The corresponding oxyanion of phosphorus is \(\mathrm{PO}_{4}^{3-}\) . The \(\mathrm{NO}_{4}^{3-}\) ion is known but is not very stable. The \(\mathrm{PO}_{3}-\) ion is not known. Account for these differences in terms of the bonding in the four anions.
Many important compounds in the chemical industry are derivatives of ethylene \(\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) .\) Two of them are acrylonitrile and methyl methacrylate. Complete the Lewis structures, showing all lone pairs. Give approximate values for bond angles \(a\) through \(f\) . Give the hybridization of all carbon atoms. In acrylonitrile, how many of the atoms in the molecule must lie in the same plane? How many \(\sigma\) bonds and how many \(\pi\) bonds are there in methyl methacrylate and acrylonitrile?
Draw the Lewis structures for \(\mathrm{SeO}_{2}, \mathrm{PCl}_{3}, \mathrm{NNO}, \mathrm{COS},\) and \(\mathrm{PF}_{3} .\) Which of the compounds are polar? Which of the compounds exhibit at least one bond angle that is approximately \(120^{\circ}\) Which of the compounds exhibit \(s p^{3}\) hybridization by the central atom? Which of the compounds have a linear molecular structure?
Show how a hydrogen 1\(s\) atomic orbital and a fluorine 2\(p\) atomic orbital overlap to form bonding and antibonding molecular orbitals in the hydrogen fluoride molecule. Are these molecular orbitals \(\sigma\) or \(\pi\) molecular orbitals?
What do you think about this solution?
We value your feedback to improve our textbook solutions.