Chapter 9: Problem 65
Describe the bonding in the \(\mathrm{O}_{3}\) molecule and the \(\mathrm{NO}_{2}^{-}\) ion using the localized electron model. How would the molecular orbital model describe the \(\pi\) bonding in these two species?
Chapter 9: Problem 65
Describe the bonding in the \(\mathrm{O}_{3}\) molecule and the \(\mathrm{NO}_{2}^{-}\) ion using the localized electron model. How would the molecular orbital model describe the \(\pi\) bonding in these two species?
All the tools & learning materials you need for study success - in one app.
Get started for freeThe oxyanion of nitrogen in which it has the highest oxidation state is the nitrate ion \(\left(\mathrm{NO}_{3}^{-}\right) .\) The corresponding oxyanion of phosphorus is \(\mathrm{PO}_{4}^{3-}\) . The \(\mathrm{NO}_{4}^{3-}\) ion is known but is not very stable. The \(\mathrm{PO}_{3}-\) ion is not known. Account for these differences in terms of the bonding in the four anions.
The diatomic molecule OH exists in the gas phase. OH plays an important part in combustion reactions and is a reactive oxidizing agent in polluted air. The bond length and bond energy have been measured to be 97.06 \(\mathrm{pm}\) and 424.7 \(\mathrm{kJ} / \mathrm{mol}\) respectively. Assume that the OH molecule is analogous to the HF molecule discussed in the chapter and that the MOs result from the overlap of a \(p_{z}\) orbital from oxygen and the 1\(s\) orbital of hydrogen (the O-H bond lies along the z axis). a. Draw pictures of the sigma bonding and antibonding molecular orbitals in OH. b. Which of the two MOs has the greater hydrogen 1\(s\) character? c. Can the 2\(p_{x}\) orbital of oxygen form MOs with the 1\(s\) orbital of hydrogen? Explain. d. Knowing that only the 2\(p\) orbitals of oxygen interact significantly with the 1\(s\) orbital of hydrogen, complete the MO energy-level diagram for OH. Place the correct number of electrons in the energy levels. e. Estimate the bond order for OH. f. Predict whether the bond order of \(\mathrm{OH}^{+}\) is greater than, less than, or the same as that of OH. Explain.
A variety of chlorine oxide fluorides and related cations and anions are known. They tend to be powerful oxidizing and fluorinating agents. \(\mathrm{FClO}_{3}\) is the most stable of this group of compounds and has been studied as an oxidizing component in rocket propellants. Draw a Lewis structure for \(\mathrm{F}_{3} \mathrm{ClO}\) , \(\mathrm{F}_{2} \mathrm{ClO}_{2}^{+},\) and \(\mathrm{F}_{3} \mathrm{ClO}_{2}\) . What is the molecular structure for each species, and what is the expected hybridization of the central chlorine atom in each compound or ion?
Use the localized electron model to describe the bonding in \(\mathrm{H}_{2} \mathrm{O}\) .
Use the localized electron model to describe the bonding in \(\mathrm{CCl}_{4}\) .
What do you think about this solution?
We value your feedback to improve our textbook solutions.