Chapter 9: Problem 35
Why must all six atoms in \(\mathrm{C}_{2} \mathrm{H}_{4}\) lie in the same plane?
Chapter 9: Problem 35
Why must all six atoms in \(\mathrm{C}_{2} \mathrm{H}_{4}\) lie in the same plane?
All the tools & learning materials you need for study success - in one app.
Get started for freeFor each of the following molecules or ions that contain sulfur, write the Lewis structure(s), predict the molecular structure (including bond angles), and give the expected hybrid orbitals for sulfur. $$ \begin{array}{l}{\text { a. } \mathrm{SO}_{2}} \\ {\text { b. } \mathrm{SO}_{3}}\end{array} $$ $$ \text {c} \mathrm{s}_{2} \mathrm{O}_{3}^{2-}\left[\begin{array}{c}{\mathrm{o}} \\\ {\mathrm{s}-\mathrm{s}-\mathrm{o}} \\ {\mathrm{o}} \\\ {\mathrm{o}}\end{array}\right]^{2-} $$ e. \(\mathrm{SO}_{3}^{2-}\) f. \(\mathrm{SO}_{4}^{2-}\) g. \(\mathrm{SF}_{2}\) h. \(\mathrm{SF}_{4}\) i. \(\mathrm{SF}_{6}\) j. \(\mathrm{F}_{3} \mathrm{S}-\mathrm{SF}\) k. \(\mathrm{SF}_{5}+\)
Draw the Lewis structure for HCN. Indicate the hybrid orbitals, and draw a picture showing all the bonds between the atoms, labeling each bond as \(\sigma\) or \(\pi .\)
Describe the bonding in the \(\mathrm{O}_{3}\) molecule and the \(\mathrm{NO}_{2}^{-}\) ion using the localized electron model. How would the molecular orbital model describe the \(\pi\) bonding in these two species?
The oxyanion of nitrogen in which it has the highest oxidation state is the nitrate ion \(\left(\mathrm{NO}_{3}^{-}\right) .\) The corresponding oxyanion of phosphorus is \(\mathrm{PO}_{4}^{3-}\) . The \(\mathrm{NO}_{4}^{3-}\) ion is known but is not very stable. The \(\mathrm{PO}_{3}-\) ion is not known. Account for these differences in terms of the bonding in the four anions.
Using the molecular orbital model, write electron configurations for the following diatomic species and calculate the bond orders. Which ones are paramagnetic? Place the species in order of increasing bond length and bond energy. $$ \text {a} \mathrm{CO} \quad \text { b. } \mathrm{CO}^{+} \quad \text { c. } \mathrm{CO}^{2+} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.