Chapter 9: Problem 102
Arrange the following from lowest to highest ionization energy: \(\mathrm{O}, \mathrm{O}_{2}, \mathrm{O}_{2}^{-}, \mathrm{O}_{2}^{+} .\) Explain your answer.
Chapter 9: Problem 102
Arrange the following from lowest to highest ionization energy: \(\mathrm{O}, \mathrm{O}_{2}, \mathrm{O}_{2}^{-}, \mathrm{O}_{2}^{+} .\) Explain your answer.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe \(\mathrm{N}_{2} \mathrm{O}\) molecule is linear and polar. a. On the basis of this experimental evidence, which arrangement, NNO or NON, is correct? Explain your answer. b. On the basis of your answer to part a, write the Lewis structure of \(\mathrm{N}_{2} \mathrm{O}\) (including resonance forms). Give the formal charge on each atom and the hybridization of the central atom. c. How would the multiple bonding in : \(\mathrm{N} \equiv \mathrm{N}-\) O: be described in terms of orbitals?
Complete the Lewis structures of the following molecules. Predict the molecular structure, polarity, bond angles, and hybrid orbitals used by the atoms marked by asterisks for each molecule. a. \(\mathrm{BH}_{3}\) a. \(\mathrm{BH}_{3}\) b. \(\mathrm{N}_{2} \mathrm{F}_{2}\) c. \(\mathrm{C}_{4} \mathrm{H}_{6}\)
The molecules \(\mathrm{N}_{2}\) and \(\mathrm{CO}\) are isoelectronic but their properties are quite different. Although as a first approximation we often use the same MO diagram for both, suggest how the \(\mathrm{MOs}\) in \(\mathrm{N}_{2}\) and \(\mathrm{CO}\) might be different.
Use the localized electron model to describe the bonding in \(\mathrm{H}_{2} \mathrm{O}\) .
Using molecular orbital theory, explain why the removal of an electron from \(\mathrm{O}_{2}\) strengthens bonding, whereas the removal of an electron from \(\mathrm{N}_{2}\) weakens bonding.
What do you think about this solution?
We value your feedback to improve our textbook solutions.