Chapter 9: Problem 1
What are molecular orbitals? How do they compare with atomic orbitals? Can you tell by the shape of the bonding and antibonding orbitals which is lower in energy? Explain.
Chapter 9: Problem 1
What are molecular orbitals? How do they compare with atomic orbitals? Can you tell by the shape of the bonding and antibonding orbitals which is lower in energy? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freePlace the species \(\mathrm{B}_{2}^{+}, \mathrm{B}_{2},\) and \(\mathrm{B}_{2}^{-}\) in order of increasing bond length and increasing bond energy.
The allene molecule has the following Lewis structure: Must all hydrogen atoms lie the same plane? If not, what is their spatial relationship? Explain.
Explain the difference between the \(\sigma\) and \(\pi\) MOs for homo- nuclear diatomic molecules. How are bonding and antibonding orbitals different? Why are there two \(\pi\) MOs and one \(\sigma\) MO? Why are the \(\pi\) MOs degenerate?
A flask containing gaseous \(\mathrm{N}_{2}\) is irradiated with 25 -nm light. a. Using the following information, indicate what species can form in the flask during irradiation. $$ \begin{array}{ll}{\mathrm{N}_{2}(g) \longrightarrow 2 \mathrm{N}(g)} & {\Delta H=941 \mathrm{kJ} / \mathrm{mol}} \\ {\mathrm{N}_{2}(g) \longrightarrow \mathrm{N}_{2}^{+}(g)+\mathrm{e}^{-}} & {\Delta H=1501 \mathrm{kJ} / \mathrm{mol}} \\ {\mathrm{N}(g) \longrightarrow \mathrm{N}^{+}(g)+\mathrm{e}^{-}} & {\Delta H=1402 \mathrm{kJ} / \mathrm{mol}}\end{array} $$ b. What range of wavelengths will produce atomic nitrogen in the flask but will not produce any ions? c. Explain why the first ionization energy of \(\mathrm{N}_{2}(1501 \mathrm{kJ} /\) mol) is greater than the first ionization energy of atomic nitrogen \((1402 \mathrm{kJ} / \mathrm{mol})\)
Cyanamide \(\left(\mathrm{H}_{2} \mathrm{NCN}\right),\) an important industrial chemical, is produced by the following steps: $$ \begin{array}{c}{\mathrm{CaC}_{2}+\mathrm{N}_{2} \longrightarrow \mathrm{CaNCN}+\mathrm{C}} \\ {\mathrm{CaNCN} \stackrel{\mathrm{Acid}}{\longrightarrow} \mathrm{H}_{2} \mathrm{NCN}} \\\ {\mathrm{Cyanamide}}\end{array} $$ Calcium cyanamide (CaNCN) is used as a direct-application fertilizer, weed killer, and cotton defoliant. It is also used to make cyanamide, dicyandiamide, and melamine plastics: a. Write Lewis structures for \(\mathrm{NCN}^{2-}, \mathrm{H}_{2} \mathrm{NCN}\) , dicyandiamide, and melamine, including resonance structures where appropriate. b. Give the hybridization of the C and N atoms in each species. c. How many \(\sigma\) bonds and how many \(\pi\) bonds are in each species? d. Is the ring in melamine planar? e. There are three different \(C-N\) bond distances in dicyandiamide, \(\mathrm{NCNC}\left(\mathrm{NH}_{2}\right)_{2}\) , and the molecule is nonlinear. Of all the resonance structures you drew for this molecule, predict which should be the most important.
What do you think about this solution?
We value your feedback to improve our textbook solutions.