Problem 102
Arrange the following from lowest to highest ionization energy: \(\mathrm{O}, \mathrm{O}_{2}, \mathrm{O}_{2}^{-}, \mathrm{O}_{2}^{+} .\) Explain your answer.
Problem 103
Use the MO model to determine which of the following has the smallest ionization energy: \(\mathrm{N}_{2}, \mathrm{O}_{2}, \mathrm{N}_{2}^{2-}, \mathrm{N}_{2}^{-}, \mathrm{O}_{2}^{+} .\) Explain your answer.
Problem 105
Carbon monoxide (CO) forms bonds to a variety of metals and metal ions. Its ability to bond to iron in hemoglobin is the reason that \(\mathrm{CO}\) is so toxic. The bond carbon monoxide forms to metals is through the carbon atom: $$ \mathrm{M}-\mathrm{C} \equiv \mathrm{O} $$ a. On the basis of electronegativities, would you expect the carbon atom or the oxygen atom to form bonds to metals? b. Assign formal charges to the atoms in CO. Which atom would you expect to bond to a metal on this basis? c. In the MO model, bonding MOs place more electron density near the more electronegative atom. (See the HF molecule in Figs. 9.43 and 9.44.) Antibonding MOs place more electron density near the less electronegative atom in the diatomic molecule. Use the MO model to predict which atom of carbon monoxide should form bonds to metals.
Problem 107
As the head engineer of your starship in charge of the warp drive, you notice that the supply of dilithium is critically low. While searching for a replacement fuel, you discover some diboron, B. a. What is the bond order in \(\mathrm{Li}_{2}\) and \(\mathrm{B}_{2} ?\) b. How many electrons must be removed from \(\mathrm{B}_{2}\) to make it isoelectronic with \(\mathrm{Li}_{2}\) so that it might be used in the warp drive? c. The reaction to make \(\mathrm{B}_{2}\) isoelectronic with \(\mathrm{Li}_{2}\) is generalized (where \(n=\) number of electrons determined in part \(\mathrm{b}\) ) as follows: $$ \mathrm{B}_{2} \longrightarrow \mathrm{B}_{2}^{n+}+n \mathrm{e}^{-} \quad \Delta H=6455 \mathrm{kJ} / \mathrm{mol} $$ How much energy is needed to ionize 1.5 \(\mathrm{kg} \mathrm{B}_{2}\) to the desired isoelectronic species?
Problem 108
An unusual category of acids known as superacids, which are defined as any acid stronger than 100\(\%\) sulfuric acid, can be prepared by seemingly simple reactions similar to the one below. In this example, the reaction of anhydrous HF with SbF produces the superacid \(\left[\mathrm{H}_{2} \mathrm{F}\right]^{+}\left[\mathrm{SbF}_{6}\right]^{-} :\) $$ 2 \mathrm{HF}(l)+\mathrm{SbF}_{5}(l) \longrightarrow\left[\mathrm{H}_{2} \mathrm{F}\right]^{+}\left[\mathrm{SbF}_{6}\right]^{-}(l) $$ a. What are the molecular structures of all species in this reaction? What are the hybridizations of the central atoms in each species? b. What mass of \(\left[\mathrm{H}_{2} \mathrm{F}\right]^{+}\left[\mathrm{SbF}_{6}\right]^{-}\) can be prepared when 2.93 \(\mathrm{mL}\) anhydrous \(\mathrm{HF}\) (density \(=0.975 \mathrm{g} / \mathrm{mL} )\) and 10.0 \(\mathrm{mL}\) SbFs (density \(=3.10 \mathrm{g} / \mathrm{mL}\) ) are allowed to react?
Problem 109
Determine the molecular structure and hybridization of the central atom \(\mathrm{X}\) in the polyatomic ion \(\mathrm{XY}_{3}+\) given the following information: A neutral atom of \(\mathrm{X}\) contains 36 electrons, and the element \(\mathrm{Y}\) makes an anion with a \(1-\) charge, which has the electron configuration 1\(s^{2} 2 s^{2} 2 p^{6}\)
Problem 110
Although nitrogen trifluoride \(\left(\mathrm{NF}_{3}\right)\) is a thermally stable compound, nitrogen triodide \(\left(\mathrm{N} \mathrm{I}_{3}\right)\) is known to be a highly explosive material. \(\mathrm{NI}_{3}\) can be synthesized according to the equation $$ \mathrm{BN}(s)+3 \mathrm{IF}(g) \longrightarrow \mathrm{BF}_{3}(g)+\mathrm{NI}_{3}(g) $$ a. What is the enthalpy of formation for \(\mathrm{NI}_{3}(s)\) given the enthalpy of reaction \((-307 \mathrm{kJ})\) and the enthalpies of formation for \(\mathrm{BN}(s)(-254 \mathrm{kJ} / \mathrm{mol}), \operatorname{IF}(g)(-96 \mathrm{kJ} / \mathrm{mol})\) and \(\mathrm{BF}_{3}(g)(-1136 \mathrm{kJ} / \mathrm{mol}) ?\) b. It is reported that when the synthesis of \(\mathrm{NI}_{3}\) is conducted using 4 moles of IF for every 1 \(\mathrm{mole}\) of \(\mathrm{BN}\) , one of the by-products isolated is \(\left[\mathrm{IF}_{2}\right]^{+}\left[\mathrm{BF}_{4}\right]^{-} .\) What are the molecular geometries of the species in this by-product? What are the hybridizations of the central atoms in each species in the by-product?