Chapter 8: Problem 10
What is meant by a chemical bond? Why do atoms form bonds with each other? Why do some elements exist as molecules in nature instead of as free atoms?
Chapter 8: Problem 10
What is meant by a chemical bond? Why do atoms form bonds with each other? Why do some elements exist as molecules in nature instead of as free atoms?
All the tools & learning materials you need for study success - in one app.
Get started for freePlace the species below in order of the shortest to the longest nitrogen–oxygen bond. $$\mathrm{H}_{2} \mathrm{NOH}, \quad \mathrm{N}_{2} \mathrm{O}, \quad \mathrm{NO}^{+}, \quad \mathrm{NO}_{2}^{-}, \quad \mathrm{NO}_{3}^{-}$$ \(\left(\mathrm{H}_{2} \mathrm{NOH} \text { exists as } \mathrm{H}_{2} \mathrm{N}-\mathrm{OH} .\right)\)
Consider the following energy changes: $$\begin{array}{ll} \text {} & \quad { \Delta H} \\ \text {} & {(k J / m o l)} \\ \hline \\ {\mathrm{Mg}(g) \rightarrow \mathrm{Mg}^{+}(g)+\mathrm{e}^{-}} & {735} \\ {\mathrm{Mg}^{+}(g) \rightarrow \mathrm{Mg}^{2+}(g)+\mathrm{e}^{-}} & {1445} \\ {\mathrm{O}(g)+\mathrm{e}^{-} \rightarrow \mathrm{O}^{-}(g)} & {-141} \\ {\mathrm{O}^{-}(g)+\mathrm{e}^{-} \rightarrow 0^{2-}(g)} & {878}\end{array}$$ Magnesium oxide exists as \(\mathrm{Mg}^{2+} \mathrm{O}^{2-}\) and not as \(\mathrm{Mg}^{+} \mathrm{O}^{-}\) Explain.
The standard enthalpies of formation for \(\mathrm{S}(g), \mathrm{F}(g), \mathrm{SF}_{4}(g),\) and \(\mathrm{SF}_{6}(g)\) are \(+278.8,+79.0,-775,\) and \(-1209 \mathrm{kJ} / \mathrm{mol}\) respectively. a. Use these data to estimate the energy of an \(\mathrm{S}-\) F bond. b. Compare your calculated value to the value given in Table \(8.5 .\) What conclusions can you draw? c. Why are the \(\Delta H_{f}^{\circ}\) values for \(\mathrm{S}(g)\) and \(\mathrm{F}(g)\) not equal to zero, since sulfur and fluorine are elements?
Hydrogen has an electronegativity value between boron and carbon and identical to phosphorus. With this in mind, rank the following bonds in order of decreasing polarity: \(\mathrm{P}-\mathrm{H}\) , \(\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}, \mathrm{F}-\mathrm{H}, \mathrm{C}-\mathrm{H} .\)
Use bond energies to estimate \(\Delta H\) for the combustion of one mole of acetylene: $$\mathrm{C}_{2} \mathrm{H}_{2}(g)+\frac{5}{2} \mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.