Problem 61
Use the following data to estimate \(\Delta H_{f}^{\circ}\) for potassium chloride. $$\mathrm{K}(s)+\frac{1}{2} \mathrm{Cl}_{2}(g) \longrightarrow \mathrm{KCl}(s)$$ \(\begin{array}{l}{\text { Lattice energy }} & {-690 . \mathrm{kJ} / \mathrm{mol}} \\ {\text { Ionization energy for } \mathrm{K}} & \quad{419 \mathrm{kJ} / \mathrm{mol}} \\ {\text { Electron affinity of } \mathrm{Cl}} & {-349 \mathrm{kJ} / \mathrm{mol}}\\\\{\text { Bond energy of } \mathrm{Cl}_{2}} & \quad {239 \mathrm{kJ} / \mathrm{mol}} \\ {\text { Enthalpy of sublimation for } \mathrm{K}} & \quad {90 . \mathrm{kJ} / \mathrm{mol}}\end{array}\)
Problem 62
Use the following data to estimate \(\Delta H_{\mathrm{f}}^{\circ}\) for magnesium fluoride. $$\mathrm{Mg}(s)+\mathrm{F}_{2}(g) \longrightarrow \mathrm{MgF}_{2}(s)$$ \(\begin{array}{l}{\text { Lattice energy }} & {-22913 . \mathrm{kJ} / \mathrm{mol}} \\ {\text { First ionization energy of } \mathrm{Mg}} & \quad{735 \mathrm{kJ} / \mathrm{mol}} \\ {\text {Second ionization energy of } \mathrm{Mg}} & \quad {1445 \mathrm{kJ} / \mathrm{mol}}\\\\{\text { Electron affinity of } \mathrm{F}} & {-328 \mathrm{kJ} / \mathrm{mol}} \\ {\text { Bond energy of } \mathrm{F}_{2}} & \quad {154 \mathrm{kJ} / \mathrm{mol}} \\\ {\text { Enthalpy of sublimation for } \mathrm{Mg}} & \quad {150 . \mathrm{kJ} / \mathrm{mol}} \end{array}\)
Problem 63
Consider the following energy changes: $$\begin{array}{ll} \text {} & \quad { \Delta H} \\ \text {} & {(k J / m o l)} \\ \hline \\ {\mathrm{Mg}(g) \rightarrow \mathrm{Mg}^{+}(g)+\mathrm{e}^{-}} & {735} \\ {\mathrm{Mg}^{+}(g) \rightarrow \mathrm{Mg}^{2+}(g)+\mathrm{e}^{-}} & {1445} \\ {\mathrm{O}(g)+\mathrm{e}^{-} \rightarrow \mathrm{O}^{-}(g)} & {-141} \\ {\mathrm{O}^{-}(g)+\mathrm{e}^{-} \rightarrow 0^{2-}(g)} & {878}\end{array}$$ Magnesium oxide exists as \(\mathrm{Mg}^{2+} \mathrm{O}^{2-}\) and not as \(\mathrm{Mg}^{+} \mathrm{O}^{-}\) Explain.
Problem 64
Compare the electron affinity of fluorine to the ionization energy of sodium. Is the process of an electron being “pulled” from the sodium atom to the fluorine atom exothermic or endothermic? Why is NaF a stable compound? Is the overall formation of NaF endothermic or exothermic? How can this be?
Problem 65
Consider the following: Li(s) \(+\frac{1}{2} \mathrm{I}_{2}(g) \rightarrow\) Liil(s) \(\Delta H=\) \(-292 \mathrm{kJ} . \mathrm{LiI}(s)\) has a lattice energy of \(-753 \mathrm{kJ} / \mathrm{mol} .\) The ionization energy of Li(g) is \(520 . \mathrm{kJ} / \mathrm{mol},\) the bond energy of \(\mathrm{I}_{2}(g)\) is 151 \(\mathrm{kJ} / \mathrm{mol}\) , and the electron affinity of \(\mathrm{I}(g)\) is \(-295 \mathrm{kJ} / \mathrm{mol}\) . Use these data to determine the heat of sublimation of Li(s).
Problem 66
Use the following data (in kJ/mol) to estimate \(\Delta H\) for the reaction \(S^{-}(g)+e^{-} \rightarrow S^{2-}(g)\) . Include an estimate of uncertainty. \(\begin{aligned} \mathrm{S}(s) \longrightarrow \mathrm{S}(g) & \Delta H=277 \mathrm{kJ} / \mathrm{mol} \\ \mathrm{S}(g)+\mathrm{e}^{-} \longrightarrow \mathrm{S}^{-}(g) & \Delta H=-200 \mathrm{kJ} / \mathrm{mol} \end{aligned}\) Assume that all values are known to \(\pm 1 \mathrm{kJ} / \mathrm{mol}\)
Problem 68
The lattice energies of \(\mathrm{FeCl}_{3}, \mathrm{FeCl}_{2},\) and \(\mathrm{Fe}_{2} \mathrm{O}_{3}\) are (in no particular order) \(-2631,-5359,\) and \(-14,774 \mathrm{kJ} / \mathrm{mol}\) . Match the appropriate formula to each lattice energy. Explain.
Problem 69
Use bond energy values (Table 8.5\()\) to estimate \(\Delta H\) for each of the following reactions in the gas phase. a. \(\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}\) b. \(\mathrm{N} \equiv \mathrm{N}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}\)
Problem 75
Use bond energies to estimate \(\Delta H\) for the combustion of one mole of acetylene: $$\mathrm{C}_{2} \mathrm{H}_{2}(g)+\frac{5}{2} \mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)$$
Problem 78
Consider the following reaction: $$A_{2}+B_{2} \longrightarrow 2 A B \quad \Delta H=-285 \mathrm{kJ}$$ The bond energy for \(\mathrm{A}_{2}\) is one-half the amount of the AB bond energy. The bond energy of \(\mathrm{B}_{2}=432 \mathrm{kJ} / \mathrm{mol}\) . What is the bond energy of \(\mathrm{A}_{2}\) ?