Chapter 7: Problem 182
Without looking at data in the text, sketch a qualitative graph of the third ionization energy versus atomic number for the elements Na through Ar, and explain your graph.
Chapter 7: Problem 182
Without looking at data in the text, sketch a qualitative graph of the third ionization energy versus atomic number for the elements Na through Ar, and explain your graph.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn the ground state of element 115, Uup, a. how many electrons have \(n=5\) as one of their quantum numbers? b. how many electrons have \(\ell=3\) as one of their quantum numbers? c. how many electrons have \(m_{\ell}=1\) as one of their quantum numbers? d. how many electrons have \(m_{s}=-\frac{1}{2}\) as one of their quantum numbers?
Answer the following questions assuming that \(m_{s}\) could have three values rather than two and that the rules for \(n, \ell,\) and \(m_{\ell}\) are the normal ones. a. How many electrons would an orbital be able to hold? b. How many elements would the first and second periods in the periodic table contain? c. How many elements would be contained in the first transition metal series? d. How many electrons would the set of 4\(f\) orbitals be able to hold?
Give a possible set of values of the four quantum numbers for the 4s and 3d electrons in titanium.
One bit of evidence that the quantum mechanical model is “correct” lies in the magnetic properties of matter. Atoms with unpaired electrons are attracted by magnetic fields and thus are said to exhibit paramagnetism. The degree to which this effect is observed is directly related to the number of unpaired electrons present in the atom. Consider the ground-state electron configurations for Li, N, Ni, Te, Ba, and Hg. Which of these atoms would be expected to be paramagnetic, and how many unpaired electrons are present in each paramagnetic atom?
Write equations corresponding to the following. a. the fourth ionization energy of Se b. the electron affinity of \(\mathrm{S}^{-}\) c. the electron affinity of \(\mathrm{Fe}^{3+}\) d. the ionization energy of Mg
What do you think about this solution?
We value your feedback to improve our textbook solutions.