Chapter 7: Problem 167
Consider the ground state of arsenic, As. How many electrons have \(\ell=1\) as one of their quantum numbers? How many electrons have \(m_{\ell}=0 ?\) How many electrons have \(m_{\ell}=+1 ?\)
Chapter 7: Problem 167
Consider the ground state of arsenic, As. How many electrons have \(\ell=1\) as one of their quantum numbers? How many electrons have \(m_{\ell}=0 ?\) How many electrons have \(m_{\ell}=+1 ?\)
All the tools & learning materials you need for study success - in one app.
Get started for freeValence electrons are those electrons in the outermost principal quantum level (highest n level) of an atom in its ground state. Groups 1A to 8A have from 1 to 8 valence electrons. For each group of the representative elements (1A–8A), give the number of valence electrons, the general valence electron configuration, a sample element in that group, and the specific valence electron configuration for that element.
Complete and balance the equations for the following reactions. a. \(\operatorname{Li}(s)+\mathrm{N}_{2}(g) \rightarrow\) b. \(\operatorname{Rb}(s)+\mathrm{S}(s) \rightarrow\)
An electron is excited from the \(n=1\) ground state to the \(n=\) 3 state in a hydrogen atom. Which of the following statements are true? Correct the false statements to make them true. a. It takes more energy to ionize (completely remove) the electron from \(n=3\) than from the ground state. b. The electron is farther from the nucleus on average in the \(n=3\) state than in the \(n=1\) state. c. The wavelength of light emitted if the electron drops from \(n=3\) to \(n=2\) will be shorter than the wavelength of light emitted if the electron falls from \(n=3\) to \(n=1 .\) d. The wavelength of light emitted when the electron returns to the ground state from \(n=3\) will be the same as the wavelength of light absorbed to go from \(n=1\) to \(n=3\) e. For \(n=3,\) the electron is in the first excited state.
Calculate the de Broglie wavelength for each of the following. a. an electron with a velocity 10.% of the speed of light b. a tennis ball ( 55 g) served at 35 \(\mathrm{m} / \mathrm{s}(\sim 80 \mathrm{mi} / \mathrm{h})\)
Assume that a hydrogen atom's electron has been excited to the \(n=6\) level. How many different wavelengths of light can be emitted as this excited atom loses energy?
What do you think about this solution?
We value your feedback to improve our textbook solutions.