Chapter 7: Problem 165
Assume that a hydrogen atom's electron has been excited to the \(n=6\) level. How many different wavelengths of light can be emitted as this excited atom loses energy?
Chapter 7: Problem 165
Assume that a hydrogen atom's electron has been excited to the \(n=6\) level. How many different wavelengths of light can be emitted as this excited atom loses energy?
All the tools & learning materials you need for study success - in one app.
Get started for freeWrite the expected electron configurations for each of the following atoms: Cl, Sb, Sr, W, Pb, Cf.
The work function of an element is the energy required to remove an electron from the surface of the solid element. The work function for lithium is 279.7 kJ/mol (that is, it takes 279.7 kJ of energy to remove one mole of electrons from one mole of Li atoms on the surface of Li metal). What is the maximum wavelength of light that can remove an electron from an atom on the surface of lithium metal?
In each of the following sets, which atom or ion has the smallest radius? a. H, He b. Cl, In, Se c. element 120, element 119, element 116 d. Nb, Zn, Si e. \(\mathrm{Na}^{-}, \mathrm{Na}, \mathrm{Na}^{+}\)
X rays have wavelengths on the order of \(1 \times 10^{-10} \mathrm{m} .\) Calcu- late the energy of \(1.0 \times 10^{-10} \mathrm{m} \mathrm{X}\) rays in units of kilojoules per mole of \(\mathrm{X}\) rays. AM radio waves have wavelengths on the order of \(1 \times 10^{4} \mathrm{m}\) . Calculate the energy of \(1.0 \times 10^{4} \mathrm{m}\) radio waves in units of kilojoules per mole of radio waves. Consider that the bond energy of a carbon-carbon single bond found in organic compounds is 347 \(\mathrm{kJ} / \mathrm{mol}\) . Would \(\mathrm{x}\) rays and/or radio waves be able to disrupt organic compounds by breaking carbon-carbon single bonds?
One of the emission spectral lines for \(\mathrm{Be}^{3+}\) has a wavelength of 253.4 \(\mathrm{nm}\) for an electronic transition that begins in the state with \(n=5 .\) What is the principal quantum number of the lower-energy state corresponding to this emission? (Hint: The Bohr model can be applied to one- electron ions. Don't forget the \(Z\) factor: \(Z=\) nuclear charge \(=\) atomic number.)
What do you think about this solution?
We value your feedback to improve our textbook solutions.