Chapter 7: Problem 140
Predict the atomic number of the next alkali metal after francium and give its ground-state electron configuration.
Chapter 7: Problem 140
Predict the atomic number of the next alkali metal after francium and give its ground-state electron configuration.
All the tools & learning materials you need for study success - in one app.
Get started for freeAlthough no currently known elements contain electrons in g orbitals in the ground state, it is possible that these elements will be found or that electrons in excited states of known elements could be in \(g\) orbitals. For \(g\) orbitals, the value of \(\ell\) is \(4 .\) What is the lowest value of \(n\) for which \(g\) orbitals could exist? What are the possible values of \(m_{\ell} ?\) How many electrons could a set of \(g\) orbitals hold?
One bit of evidence that the quantum mechanical model is “correct” lies in the magnetic properties of matter. Atoms with unpaired electrons are attracted by magnetic fields and thus are said to exhibit paramagnetism. The degree to which this effect is observed is directly related to the number of unpaired electrons present in the atom. Consider the ground-state electron configurations for Li, N, Ni, Te, Ba, and Hg. Which of these atoms would be expected to be paramagnetic, and how many unpaired electrons are present in each paramagnetic atom?
Neutron diffraction is used in determining the structures of molecules. a. Calculate the de Broglie wavelength of a neutron moving at 1.00\(\%\) of the speed of light. b. Calculate the velocity of a neutron with a wavelength of 75 \(\mathrm{pm}\left(1 \mathrm{pm}=10^{-12} \mathrm{m}\right)\)
It takes \(7.21 \times 10^{-19} \mathrm{J}\) of energy to remove an electron from an iron atom. What is the maximum wavelength of light that can do this?
An ion having a \(4+\) charge and a mass of 49.9 u has 2 electrons with principal quantum number \(n=1,8\) electrons with \(n=2\) and 10 electrons with \(n=3 .\) Supply as many of the properties for the ion as possible from the information given. (Hint: In forming ions for this species, the 4\(s\) electrons are lost before the 3\(d\) electrons.) a. the atomic number b. total number of \(s\) electrons c. total number of \(p\) electrons d. total number of \(d\) electrons e. the number of neutrons in the nucleus f. the ground-state electron configuration of the neutral atom
What do you think about this solution?
We value your feedback to improve our textbook solutions.