Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Predict the atomic number of the next alkali metal after francium and give its ground-state electron configuration.

Short Answer

Expert verified
The predicted atomic number of the next alkali metal after francium is 119. Assuming the current Aufbau principle applies, its ground-state electron configuration would be: \[ 1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 4s^2 \ 3d^{10} \ 4p^6 \ 5s^2 \ 4d^{10} \ 5p^6 \ 6s^2 \ 4f^{14} \ 5d^{10} \ 6p^6 \ 7s^{1} \]

Step by step solution

01

Determine the atomic number for francium

Francium is the last known alkali metal in the periodic table. Its atomic number is 87.
02

Predict the atomic number of the next alkali metal

As alkali metals are in the first group of the periodic table and have one electron in their outermost energy level, we can predict the next alkali metal's atomic number by adding one full period (or row) of elements to 87. One full period contains 32 elements, so the next alkali metal's atomic number would be: 87 + 32 = 119 Thus, the predicted atomic number of the next alkali metal would be 119.
03

Determine the ground-state electron configuration

To give the ground-state electron configuration of the new element, we need to distribute the 119 electrons in the energy levels following the Aufbau principle. The expected order of filling of electrons is: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, 7s, 5f, 6d, 7p However, as we are dealing with an unknown element with an atomic number larger than the current periodic table, we should take into account that the order of filling might not remain the same. The electron configuration for the new element might deviate from the Aufbau principle. Assuming the current Aufbau principle applies, the ground-state electron configuration for element 119 would be: \[1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 4s^2 \ 3d^{10} \ 4p^6 \ 5s^2 \ 4d^{10} \ 5p^6 \ 6s^2 \ 4f^{14} \ 5d^{10} \ 6p^6 \ 7s^{1}\] The ground-state electron configuration for the predicted element with atomic number 119 is: \[1s^2 \ 2s^2 \ 2p^6 \ 3s^2 \ 3p^6 \ 4s^2 \ 3d^{10} \ 4p^6 \ 5s^2 \ 4d^{10} \ 5p^6 \ 6s^2 \ 4f^{14} \ 5d^{10} \ 6p^6 \ 7s^{1}\]

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Although no currently known elements contain electrons in g orbitals in the ground state, it is possible that these elements will be found or that electrons in excited states of known elements could be in \(g\) orbitals. For \(g\) orbitals, the value of \(\ell\) is \(4 .\) What is the lowest value of \(n\) for which \(g\) orbitals could exist? What are the possible values of \(m_{\ell} ?\) How many electrons could a set of \(g\) orbitals hold?

One bit of evidence that the quantum mechanical model is “correct” lies in the magnetic properties of matter. Atoms with unpaired electrons are attracted by magnetic fields and thus are said to exhibit paramagnetism. The degree to which this effect is observed is directly related to the number of unpaired electrons present in the atom. Consider the ground-state electron configurations for Li, N, Ni, Te, Ba, and Hg. Which of these atoms would be expected to be paramagnetic, and how many unpaired electrons are present in each paramagnetic atom?

Neutron diffraction is used in determining the structures of molecules. a. Calculate the de Broglie wavelength of a neutron moving at 1.00\(\%\) of the speed of light. b. Calculate the velocity of a neutron with a wavelength of 75 \(\mathrm{pm}\left(1 \mathrm{pm}=10^{-12} \mathrm{m}\right)\)

It takes \(7.21 \times 10^{-19} \mathrm{J}\) of energy to remove an electron from an iron atom. What is the maximum wavelength of light that can do this?

An ion having a \(4+\) charge and a mass of 49.9 u has 2 electrons with principal quantum number \(n=1,8\) electrons with \(n=2\) and 10 electrons with \(n=3 .\) Supply as many of the properties for the ion as possible from the information given. (Hint: In forming ions for this species, the 4\(s\) electrons are lost before the 3\(d\) electrons.) a. the atomic number b. total number of \(s\) electrons c. total number of \(p\) electrons d. total number of \(d\) electrons e. the number of neutrons in the nucleus f. the ground-state electron configuration of the neutral atom

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free