Chapter 7: Problem 101
Give a possible set of values of the four quantum numbers for all the electrons in a boron atom and a nitrogen atom if each is in the ground state.
Chapter 7: Problem 101
Give a possible set of values of the four quantum numbers for all the electrons in a boron atom and a nitrogen atom if each is in the ground state.
All the tools & learning materials you need for study success - in one app.
Get started for freeValence electrons are those electrons in the outermost principal quantum level (highest n level) of an atom in its ground state. Groups 1A to 8A have from 1 to 8 valence electrons. For each group of the representative elements (1A–8A), give the number of valence electrons, the general valence electron configuration, a sample element in that group, and the specific valence electron configuration for that element.
Neutron diffraction is used in determining the structures of molecules. a. Calculate the de Broglie wavelength of a neutron moving at 1.00\(\%\) of the speed of light. b. Calculate the velocity of a neutron with a wavelength of 75 \(\mathrm{pm}\left(1 \mathrm{pm}=10^{-12} \mathrm{m}\right)\)
The wave function for the 2\(p_{z}\) orbital in the hydrogen atom is $$\psi_{2 p_{z}}=\frac{1}{4 \sqrt{2 \pi}}\left(\frac{Z}{a_{0}}\right)^{3 / 2} \sigma \mathrm{e}^{-\sigma / 2} \cos \theta$$ where \(a_{0}\) is the value for the radius of the first Bohr orbit in meters \(\left(5.29 \times 10^{-11}\right), \sigma\) is \(Z\left(r / a_{0}\right), r\) is the value for the distance from the nucleus in meters, and \(\theta\) is an angle. Calculate the value of \(\psi_{2 p_{z}}^{2}\) at \(r=a_{0}\) for \(\theta=0^{\circ}\left(z \text { axis ) and for } \theta=90^{\circ}\right.\) (xy plane).
An ionic compound of potassium and oxygen has the empirical formula KO. Would you expect this compound to be potassium(II) oxide or potassium peroxide? Explain.
In the ground state of cadmium, Cd, a. how many electrons have \(\ell=2\) as one of their quantum numbers? b. how many electrons have \(n=4\) as one of their quantum numbers? c. how many electrons have \(m_{\ell}=-1\) as one of their quantum numbers? d. how many electrons hav \(m_{s}=-\frac{1}{2}\) as one of their quantum numbers?
What do you think about this solution?
We value your feedback to improve our textbook solutions.