Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Are the following processes exothermic or endothermic? a. the combustion of gasoline in a car engine b. water condensing on a cold pipe c. \(\mathrm{CO}_{2}(s) \longrightarrow \mathrm{CO}_{2}(g)\) d. \(\mathrm{F}_{2}(g) \longrightarrow 2 \mathrm{F}(g)\)

Short Answer

Expert verified
a. The combustion of gasoline in a car engine is an exothermic process. b. Water condensing on a cold pipe is an exothermic process. c. \(CO_{2}(s) \longrightarrow CO_{2}(g)\) is an endothermic process. d. \(F_{2}(g) \longrightarrow 2 F(g)\) is an endothermic process.

Step by step solution

01

a. Combustion of gasoline in a car engine

Combustion is a chemical reaction that occurs between a fuel and an oxidant, producing heat and light in the form of a flame. In this process, the chemical potential energy stored within the gasoline is converted into thermal energy. Since heat is released during combustion, this process is exothermic.
02

b. Water condensing on a cold pipe

When water condenses, it changes from its gaseous state (water vapor) to its liquid state. This phase transition is accompanied by the release of energy in the form of heat. Therefore, the condensation of water on a cold pipe is an exothermic process.
03

c. CO2(s) → CO2(g)

The process described here is the sublimation of solid carbon dioxide (CO2) into gaseous carbon dioxide. During sublimation, energy is absorbed by the solid CO2 to break the intermolecular forces holding the solid structure together, resulting in a transition to the gaseous state. Thus, this process is endothermic because it requires an input of energy (heat) for the phase change to occur.
04

d. F2(g) → 2 F(g)

The given reaction represents the dissociation of a diatomic fluorine molecule (F2) into two separate fluorine atoms (F). Breaking the chemical bond between the two fluorine atoms requires an input of energy since chemical bonds store energy. Therefore, this process is endothermic.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Nitromethane, \(\mathrm{CH}_{3} \mathrm{NO}_{2},\) can be used as a fuel. When the liquid is burned, the (unbalanced) reaction is mainly $$ \mathrm{CH}_{3} \mathrm{NO}_{2}(l)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{CO}_{2}(g)+\mathrm{N}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g) $$ a. The standard enthalpy change of reaction \(\left(\Delta H_{\mathrm{rxn}}^{\circ}\right)\) for the balanced reaction (with lowest whole-number coefficients \()\) is \(-1288.5 \mathrm{kJ} .\) Calculate \(\Delta H_{\mathrm{f}}^{\circ}\) for nitromethane. b. A 15.0 -L flask containing a sample of nitromethane is filled with \(\mathrm{O}_{2}\) and the flask is heated to \(100 .^{\circ} \mathrm{C}\) . At this temperature, and after the reaction is complete, the total pressure of all the gases inside the flask is 950 . torr. If the mole fraction of nitrogen \(\left(\chi_{\text { nitrogen }}\right)\) is 0.134 after the reaction is complete, what mass of nitrogen was produced?

Consider the dissolution of \(\mathrm{CaCl}_{2} :\) $$ \mathrm{CaCl}_{2}(s) \longrightarrow \mathrm{Ca}^{2+}(a q)+2 \mathrm{Cl}^{-}(a q) \quad \Delta H=-81.5 \mathrm{kJ} $$ An 11.0 -g sample of \(\mathrm{CaCl}_{2}\) is dissolved in 125 g water, with both substances at \(25.0^{\circ} \mathrm{C}\) . Calculate the final temperature of the solution assuming no heat loss to the surroundings and assuming the solution has a specific heat capacity of 4.18 \(\mathrm{J} /^{\prime} \mathrm{C} \cdot \mathrm{g} .\)

In a bomb calorimeter, the reaction vessel is surrounded by water that must be added for each experiment. Since the amount of water is not constant from experiment to experiment, the mass of water must be measured in each case. The heat capacity of the calorimeter is broken down into two parts: the water and the calorimeter components. If a calorimeter contains 1.00 \(\mathrm{kg}\) water and has a total heat capacity of \(10.84 \mathrm{kJ} / \mathrm{C},\) what is the heat capacity of the calorimeter components?

Consider a balloon filled with helium at the following conditions. $$ \begin{array}{l}{313 \mathrm{g} \mathrm{He}} \\ {1.00 \mathrm{atm}} \\ {1910 . \mathrm{L}} \\ {\text { Molar Heat Capacity }=20.8 \mathrm{J} / \mathrm{C} \cdot \mathrm{mol}}\end{array} $$ The temperature of this balloon is decreased by \(41.6^{\circ} \mathrm{C}\) as the volume decreases to \(1643 \mathrm{L},\) with the pressure remaining constant. Determine \(q, w,\) and \(\Delta E(\text { in } \mathrm{kJ} \text { ) for the compression of }\) the balloon.

It has been determined that the body can generate 5500 \(\mathrm{kJ}\) of energy during one hour of strenuous exercise. Perspiration is the body's mechanism for eliminating this heat. What mass of water would have to be evaporated through perspiration to rid the body of the heat generated during 2 hours of exercise? (The heat of vaporization of water is 40.6 \(\mathrm{kJ} / \mathrm{mol.} )\)

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free