Chapter 6: Problem 28
Explain the advantages and disadvantages of hydrogen as an alternative fuel.
Chapter 6: Problem 28
Explain the advantages and disadvantages of hydrogen as an alternative fuel.
All the tools & learning materials you need for study success - in one app.
Get started for freeGiven the following data $$ \begin{aligned} \mathrm{P}_{4}(s)+6 \mathrm{Cl}_{2}(g) \longrightarrow 4 \mathrm{PCl}_{3}(g) & \Delta H=-1225.6 \mathrm{kJ} \\ \mathrm{P}_{4}(s)+5 \mathrm{O}_{2}(g) \longrightarrow \mathrm{P}_{4} \mathrm{O}_{10}(s) & \Delta H=-2967.3 \mathrm{kJ} \end{aligned} $$ $$ \begin{array}{cc}{\mathrm{PCl}_{3}(g)+\mathrm{Cl}_{2}(g) \longrightarrow \mathrm{PCl}_{5}(g)} & {\Delta H=-84.2 \mathrm{kJ}} \\\ {\mathrm{PCl}_{3}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{Cl}_{3} \mathrm{PO}(g)} & {\Delta H=-285.7 \mathrm{kJ}}\end{array} $$ calculate \(\Delta H\) for the reaction $$ \mathrm{P}_{4} \mathrm{O}_{10}(s)+6 \mathrm{PCl}_{5}(g) \longrightarrow 10 \mathrm{Cl}_{3} \mathrm{PO}(g) $$
Consider a mixture of air and gasoline vapor in a cylinder with a piston. The original volume is \(40 . \mathrm{cm}^{3} .\) If the combustion of this mixture releases \(950 . \mathrm{J}\) of energy, to what volume will the gases expand against a constant pressure of 650 . torr if all the energy of combustion is converted into work to push back the piston?
Consider the following reaction: $$ 2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(l) \quad \Delta H=-572 \mathrm{kJ} $$ a. How much heat is evolved for the production of 1.00 mole of \(\mathrm{H}_{2} \mathrm{O}(l) ?\) b. How much heat is evolved when 4.03 g hydrogen are reacted with excess oxygen? c. How much heat is evolved when 186 \(\mathrm{g}\) oxygen are reacted with excess hydrogen? d. The total volume of hydrogen gas needed to fill the Hindenburg was \(2.0 \times 10^{8} \mathrm{L}\) at 1.0 atm and \(25^{\circ} \mathrm{C} .\) How much heat was evolved when the Hindenburg exploded, assuming all of the hydrogen reacted?
Calculate \(\Delta H\) for the reaction: $$ 2 \mathrm{NH}_{3}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{N}_{2} \mathrm{H}_{4}(l)+\mathrm{H}_{2} \mathrm{O}(l) $$ given the following data: $$ 2 \mathrm{NH}_{3}(g)+3 \mathrm{N}_{2} \mathrm{O}(g) \longrightarrow 4 \mathrm{N}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l) $$ \(\Delta H=-1010 . \mathrm{kJ}\) $$ \mathrm{N}_{2} \mathrm{O}(g)+3 \mathrm{H}_{2}(g) \longrightarrow \mathrm{N}_{2} \mathrm{H}_{4}(l)+\mathrm{H}_{2} \mathrm{O}(l) $$ \(\Delta H=-317 \mathrm{kJ}\) $$ \mathrm{N}_{2} \mathrm{H}_{4}(l)+\mathrm{O}_{2}(g) \longrightarrow \mathrm{N}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l) $$ \(\Delta H=-623 \mathrm{kJ}\) $$ \mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}(l) $$ \(\Delta H=-286 \mathrm{kJ}\)
If the internal energy of a thermodynamic system is increased by \(300 . \mathrm{J}\) while 75 \(\mathrm{J}\) of expansion work is done, how much heat was transferred and in which direction, to or from the system?
What do you think about this solution?
We value your feedback to improve our textbook solutions.