Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Consider an airplane trip from Chicago, Illinois, to Denver, Colorado. List some path-dependent functions and some state functions for the plane trip.

Short Answer

Expert verified
Path-dependent functions for the airplane trip include total fuel consumption, total flight time, and the amount of turbulence encountered, as these depend on the specific route taken. State functions, which depend only on the initial and final states, include net change in altitude, net displacement, and net change in airspeed.

Step by step solution

01

Path-dependent functions examples:

1. Total fuel consumption: The amount of fuel consumed by an airplane during the trip depends on several factors, including the route taken. Different routes can have varying flight distances, altitudes, and atmospheric conditions, which affect the airplane's fuel consumption rate. 2. Total flight time: The time required to go from Chicago to Denver varies depending on the route, as well as the airplane's speed and the presence of any layovers. 3. Amount of turbulence encountered: Different routes will have different weather conditions and atmospheric factors, leading to varying levels of turbulence experienced throughout the flight.
02

State function examples:

1. Net change in altitude: After the trip from Chicago to Denver, the airplane will be at a higher altitude due to the different geographical elevation levels. The net change in altitude is a state function because it only depends on the starting and final altitudes. 2. Net displacement: The distance between Chicago and Denver remains constant, regardless of the route taken. Therefore, the net displacement is a state function. 3. Net change in airspeed: If the airplane starts from rest and ends the trip at rest, the net change in airspeed will be zero, no matter the specific path undertaken during the flight. This makes the net change in airspeed a state function. In summary, path-dependent functions are variables that depend on the specific route taken during the plane trip (e.g., total fuel consumption, total flight time, and the amount of turbulence encountered), while state functions are dependent only on the initial and final states of the system (e.g., net change in altitude, net displacement, and net change in airspeed).

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Are the following processes exothermic or endothermic? a. When solid \(\mathrm{KBr}\) is dissolved in water, the solution gets colder. b. Natural gas \(\left(\mathrm{CH}_{4}\right)\) is burned in a furnace. c. When concentrated \(\mathrm{H}_{2} \mathrm{SO}_{4}\) is added to water, the solution gets very hot. d. Water is boiled in a teakettle.

In a coffee-cup calorimeter, 150.0 \(\mathrm{mL}\) of 0.50 \(\mathrm{M}\) HCl is added to 50.0 \(\mathrm{mL}\) of 1.00 \(\mathrm{M} \mathrm{NaOH}\) to make 200.0 \(\mathrm{g}\) solution at an initial temperature of \(48.2^{\circ} \mathrm{C}\) . If the enthalpy of neutralization for the reaction between a strong acid and a strong base is \(-56 \mathrm{kJ} / \mathrm{mol}\) , calculate the final temperature of the calorimeter contents. Assume the specific heat capacity of the solution is 4.184 \(\mathrm{J} /^{\circ} \mathrm{C} \cdot \mathrm{g}\) and assume no heat loss to the surroundings.

Using the following data, calculate the standard heat of formation of ICl \((g)\) in \(\mathrm{kJ} / \mathrm{mol} :\) $$\begin{array}{ll}{\mathrm{Cl}_{2}(g) \longrightarrow 2 \mathrm{Cl}(g)} & {\Delta H^{\circ}=242.3 \mathrm{kJ}} \\ {\mathrm{I}_{2}(g) \longrightarrow 2 \mathrm{I}(g)} & {\Delta H^{\circ}=151.0 \mathrm{kJ}} \\ {\mathrm{ICl}(g) \longrightarrow \mathrm{I}(g)+\mathrm{Cl}(g)} & {\Delta H^{\circ}=211.3 \mathrm{kJ}} \\ {\mathrm{I}_{2}(s) \longrightarrow \mathrm{I}_{2}(g)} & {\Delta H^{\circ}=62.8 \mathrm{kJ}}\end{array}$$

Which has the greater kinetic energy, an object with a mass of 2.0 \(\mathrm{kg}\) and a velocity of 1.0 \(\mathrm{m} / \mathrm{s}\) or an object with a mass of 1.0 \(\mathrm{kg}\) and a velocity of 2.0 \(\mathrm{m} / \mathrm{s}\) ?

Consider the reaction $$ 2 \mathrm{HCl}(a q)+\mathrm{Ba}(\mathrm{OH})_{2}(a q) \longrightarrow \mathrm{BaCl}_{2}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l) $$ $$ \Delta H=-118 \mathrm{kJ} $$ Calculate the heat when 100.0 \(\mathrm{mL}\) of 0.500\(M \mathrm{HCl}\) is mixed with 300.0 \(\mathrm{mL}\) of 0.100\(M \mathrm{Ba}(\mathrm{OH})_{2}\) . Assuming that the temperature of both solutions was initially \(25.0^{\circ} \mathrm{C}\) and that the final mixture has a mass of 400.0 \(\mathrm{g}\) and a specific heat capacity of 4.18 \(\mathrm{J} / \mathrm{C} \cdot \mathrm{g}\) , calculate the final temperature of the mixture.

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free