Chapter 5: Problem 18
At the same conditions of pressure and temperature, ammonia gas is less dense than air. Why is this true?
Chapter 5: Problem 18
At the same conditions of pressure and temperature, ammonia gas is less dense than air. Why is this true?
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider a children’s cartoon illustrating a child holding the strings of several helium balloons and being lifted into the sky. a. Estimate the minimum number of 10.-L balloons it would take to lift a 50.-lb child. Assume air has an average molar mass of 29 g/mol, and assume the masses of the balloons and strings are negligible. b. Explain why the balloons can lift the child.
Which noble gas has the smallest density at STP? Explain
Suppose two \(200.0-\mathrm{L}\) tanks are to be filled separately with the gases helium and hydrogen. What mass of each gas is needed to produce a pressure of 2.70 atm in its respective tank at \(24^{\circ} \mathrm{C} ?\)
Silane, SiH, , is the silicon analogue of methane, \(\mathrm{CH}_{4}\) . It is prepared industrially according to the following equations: $$\begin{array}{c}{\mathrm{Si}(s)+3 \mathrm{HCl}(g) \longrightarrow \mathrm{HSiCl}_{3}(l)+\mathrm{H}_{2}(g)} \\ {4 \mathrm{HSiCl}_{3}(l) \longrightarrow \mathrm{SiH}_{4}(g)+3 \mathrm{SiCl}_{4}(l)}\end{array}$$ a. If \(156 \mathrm{mL}\) \(\mathrm{HSiCl}_{3} (d=1.34 \mathrm{g} / \mathrm{mL})\) is isolated when 15.0 \(\mathrm{L}\) \(\mathrm{HCl}\) at 10.0 \(\mathrm{atm}\) and \(35^{\circ} \mathrm{C}\) is used, what is the percent yield of \(\mathrm{HSiCl}_{3} ?\) b. When \(156 \mathrm{HSiCl}_{3}\) is heated, what volume of \(\mathrm{SiH}_{4}\) at 10.0 \(\mathrm{atm}\) and \(35^{\circ} \mathrm{C}\) will be obtained if the percent yield of the reaction is 93.1\(\% ?\)
For scuba dives below 150 \(\mathrm{ft}\) , helium is often used to replace nitrogen in the scuba tank. If 15.2 \(\mathrm{g}\) of \(\mathrm{He}(g)\) and 30.6 \(\mathrm{g}\) of \(\mathrm{O}_{2}(g)\) are added to a previously evacuated 5.00 \(\mathrm{L}\) tank at \(22^{\circ} \mathrm{C},\) calculate the partial pressure of each gas present as well as the total pressure in the tank.
What do you think about this solution?
We value your feedback to improve our textbook solutions.