Chapter 5: Problem 161
Methane \(\left(\mathrm{CH}_{4}\right)\) gas flows into a combustion chamber at a rate of \(200 . \mathrm{L} / \mathrm{min}\) at 1.50 \(\mathrm{atm}\) and ambient temperature. Air is added to the chamber at 1.00 \(\mathrm{atm}\) and the same temperature, and the gases are ignited. a. To ensure complete combustion of \(\mathrm{CH}_{4}\) to \(\mathrm{CO}_{2}(g)\) and \(\mathrm{H}_{2} \mathrm{O}(g),\) three times as much oxygen as is necessary is reacted. Assuming air is 21 mole percent \(\mathrm{O}_{2}\) and 79 \(\mathrm{mole}\) percent \(\mathrm{N}_{2},\) calculate the flow rate of air necessary to deliver the required amount of oxygen. b. Under the conditions in part a, combustion of methane was not complete as a mixture of \(\mathrm{CO}_{2}(g)\) and \(\mathrm{CO}(g)\) was produced. It was determined that 95.0\(\%\) of the carbon in the exhaust gas was present in \(\mathrm{CO}_{2}\) . The remainder was present as carbon in CO. Calculate the composition of the exhaust gas in terms of mole fraction of \(\mathrm{CO}, \mathrm{CO}_{2}, \mathrm{O}_{2}, \mathrm{N}_{2}\) and \(\mathrm{H}_{2} \mathrm{O}\) . Assume \(\mathrm{CH}_{4}\) is completely reacted and \(\mathrm{N}_{2}\) is unreacted.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.