Chapter 5: Problem 143
Metallic molybdenum can be produced from the mineral molybdenite, \(\mathrm{MoS}_{2}\). The mineral is first oxidized in air to molybdenum trioxide and sulfur dioxide. Molybdenum trioxide is then reduced to metallic molybdenum using hydrogen gas. The balanced equations are $$\operatorname{MoS}_{2}(s)+\frac{7}{2} \mathrm{O}_{2}(g) \longrightarrow \operatorname{MoO}_{3}(s)+2 \mathrm{SO}_{2}(g)$$ $$\mathrm{MoO}_{3}(s)+3 \mathrm{H}_{2}(g) \longrightarrow \mathrm{Mo}(s)+3 \mathrm{H}_{2} \mathrm{O}(l)$$ Calculate the volumes of air and hydrogen gas at \(17^{\circ} \mathrm{C}\) and 1.00 atm that are necessary to produce \(1.00 \times 10^{3} \mathrm{kg}\) pure molybdenum from \(\mathrm{MoS}_{2}\) . Assume air contains 21\(\%\) oxygen by volume, and assume 100\(\%\) yield for each reaction.
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.