Chapter 4: Problem 154
Triiodide ions are generated in solution by the following (unbalanced) reaction in acidic solution: $$\mathrm{IO}_{3}^{-}(a q)+\mathrm{I}^{-}(a q) \longrightarrow \mathrm{I}_{3}^{-}(a q)$$ Triodide ion concentration is determined by titration with a sodium thiosulfate \(\left(\mathrm{Na}_{2} \mathrm{S}_{2} \mathrm{O}_{3}\right)\) solution. The products are iodide ion and tetrathionate ion \(\left(\mathrm{S}_{4} \mathrm{O}_{6}^{2-}\right)\) a. Balance the equation for the reaction of \(\mathrm{IO}_{3}^{-}\) with \(\mathrm{I}^{-}\) ions. b. A sample of 0.6013 g of potassium iodate was dissolved in water. Hydrochloric acid and solid potassium iodide were then added. What is the minimum mass of solid KI and the minimum volume of 3.00 M HCl required to convert all of the 1 \(\mathrm{O}_{3}^{-}\) ions to \(\mathrm{I}_{3}^{-}\) ions? c. Write and balance the equation for the reaction of \(\mathrm{S}_{2} \mathrm{O}_{3}^{2-}\) with \(\mathrm{I}_{3}-\) in acidic solution. d. A 25.00 -mL sample of a 0.0100\(M\) solution of \(\mathrm{KIO}_{3}\) is reacted with an excess of \(\mathrm{KL}\) . It requires 32.04 \(\mathrm{mL}\) of \(\mathrm{Na}_{2} \mathrm{S}_{2} \mathrm{O}_{3}\) solution to titrate the \(\mathrm{I}_{3}^{-}\) ions present. What is the molarity of the \(\mathrm{Na}_{2} \mathrm{S}_{2} \mathrm{O}_{3}\) solution? e. How would you prepare 500.0 \(\mathrm{mL}\) of the KIO\(_{3}\)solution in part d using solid \(\mathrm{KIO}_{3} ?\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.