Chapter 3: Problem 2
What information do we get from a chemical formula? From a chemical equation?
Chapter 3: Problem 2
What information do we get from a chemical formula? From a chemical equation?
All the tools & learning materials you need for study success - in one app.
Get started for freeSilicon is produced for the chemical and electronics industries by the following reactions. Give the balanced equation for each reaction. a. \(\mathrm{SiO}_{2}(s)+\mathrm{C}(s)\) \(\frac{\text { Electric }}{\text { are furnace }}\) \(\mathrm{Si}(s)+\mathrm{CO}(g)\) b. Liquid silicon tetrachloride is reacted with very pure solid magnesium, producing solid silicon and solid magnesium chloride. c. \(\mathrm{Na}_{2} \mathrm{SiF}_{6}(s)+\mathrm{Na}(s) \rightarrow \mathrm{Si}(s)+\mathrm{NaF}(s)\)
A sample of a hydrocarbon (a compound consisting of only carbon and hydrogen contains \(2.59 \times 10^{23}\) atoms of hydrogen and is 17.3\(\%\) hydrogen by mass. If the molar mass of the hydrocarbon is between 55 and 65 g/mol, what amount (moles) of compound is present, and what is the mass of the sample?
The aspirin substitute, acetaminophen \(\left(\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{N}\right),\) is produced by the following three-step synthesis: $$ \mathrm{I} . \quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{3} \mathrm{N}(s)+3 \mathrm{H}_{2}(g)+\mathrm{HCl}(a q) \longrightarrow $$ $$ \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{ONCl}(s)+2 \mathrm{H}_{2} \mathrm{O}(l) $$ $$ \mathrm{II}\quad \mathrm{C}_{6} \mathrm{H}_{8} \mathrm{ONCl}(s)+\mathrm{NaOH}(a q) \longrightarrow $$ $$ \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{ON}(s)+\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{NaCl}(a q) $$ $$ \mathrm{III.} \quad \mathrm{C}_{6} \mathrm{H}_{7} \mathrm{ON}(s)+\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{3}(l) \longrightarrow $$ $$ \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{N}(s)+\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(l) $$ The first two reactions have percent yields of 87\(\%\) and 98\(\%\) by mass, respectively. The overall reaction yields 3 moles of acetaminophen product for every 4 moles of \(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}_{3} \mathrm{N}\) reacted. a. What is the percent yield by mass for the overall process? b. What is the percent yield by mass of Step III?
Balance the following equations representing combustion reactions: c. \(C_{12} \mathrm{H}_{22} \mathrm{O}_{11}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)\) d. Fe \((s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(s)\) e. \(\mathrm{FeO}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(s)\)
Coke is an impure form of carbon that is often used in the industrial production of metals from their oxides. If a sample of coke is 95\(\%\) carbon by mass, determine the mass of coke needed to react completely with 1.0 ton of copper(Il) oxide. $$ 2 \mathrm{CuO}(s)+\mathrm{C}(s) \longrightarrow 2 \mathrm{Cu}(s)+\mathrm{CO}_{2}(g) $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.