Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

The space shuttle environmental control system handled excess \(\mathrm{CO}_{2}\) (which the astronauts breathe out; it is 4.0\(\%\) by mass of exhaled air) by reacting it with lithium hydroxide, LiOH, pellets to form lithium carbonate, Li \(_{2} \mathrm{CO}_{3},\) and water. If there were seven astronauts on board the shuttle, and each exhales \(20 .\) L of air per minute, how long could clean air be generated if there were \(25,000\) g of LiOH pellets available for each shuttle mission? Assume the density of air is 0.0010 \(\mathrm{g} / \mathrm{mL}\) .

Short Answer

Expert verified
Clean air could be generated for approximately 4103.09 minutes, or about 68 hours and 23 minutes, using 25,000 g of LiOH pellets for the given shuttle mission.

Step by step solution

01

Calculate the total mass of exhaled air by the astronauts per minute

Let's find the total mass of exhaled air per minute by all seven astronauts. As the density of air is 0.0010 g/mL and each astronaut exhales 20 L of air per minute, we can calculate the mass as follows: Total volume of exhaled air by 7 astronauts = 7 astronauts * 20 L/minute * 1000 mL/L = 140,000 mL/minute Mass of exhaled air = Volume * Density = 140,000 mL/minute * 0.0010 g/mL = 140 g/minute
02

Calculate the total mass of exhaled CO2 by the astronauts per minute

Given that the CO2 comprises 4% of the mass of exhaled air, we can calculate the mass of CO2 exhaled per minute as: Mass of CO2 = 4% of Mass of exhaled air per minute = (4/100) * 140 g/minute = 5.6 g/minute
03

Write the balanced chemical equation for the reaction

We are given that the CO2 reacts with LiOH to form Li2CO3 and water. Writing and balancing the chemical equation for the reaction: 2 LiOH + CO2 → Li2CO3 + H2O
04

Determine the mass of CO2 that reacts with the given mass of LiOH

First, we need to find the moles of LiOH, given that there are 25,000 g of LiOH pellets available. The molar mass of LiOH = 6.94 (Li) + 15.999 (O) + 1.007 (H) = 23.95 g/mol. Moles of LiOH = Mass / Molar mass = 25,000 g / 23.95 g/mol = 1043.84 mol Now, from the balanced equation, 2 moles of LiOH react with 1 mole of CO2. Therefore, the moles of CO2 that react with 1043.84 moles of LiOH = 1043.84/2 = 521.92 moles. The molar mass of CO2 = 12.01 (C) + 15.999 x 2 (O) = 44.009 g/mol. Mass of CO2 that can react with 25,000 g of LiOH: = 521.92 mol * 44.009 g/mol = 22,977.32 g
05

Calculate the duration for which the LiOH pellets can generate clean air

Now that we know the mass of CO2 that can react with the given mass of LiOH and the mass of CO2 exhaled by astronauts per minute, we can calculate the duration for which clean air can be generated as: Duration = (Mass of CO2 that can react with LiOH) / (Mass of CO2 exhaled per minute) = 22,977.32 g / 5.6 g/minute = 4103.09 minutes Therefore, clean air could be generated for approximately 4103.09 minutes, or about 68 hours and 23 minutes, using 25,000 g of LiOH pellets for the given shuttle mission.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

Key Concepts

These are the key concepts you need to understand to accurately answer the question.

Molar Mass Calculation
Molar mass is crucial in stoichiometry, which involves calculations during chemical reactions.
The molar mass of a compound is the mass of one mole of that substance.
It's calculated by adding the atomic masses of all atoms in the molecule. These atomic masses can be found on the periodic table. Let's consider lithium hydroxide (LiOH) as an example. Lithium has an atomic mass of 6.94 g/mol, oxygen is 15.999 g/mol, and hydrogen is 1.007 g/mol. By adding these together, we find the molar mass of LiOH:
  • Li: 6.94 g/mol
  • O: 15.999 g/mol
  • H: 1.007 g/mol
Adding these: 6.94 + 15.999 + 1.007 = 23.95 g/mol.
Understanding molar mass is essential as it allows us to convert between grams of a substance and moles, an important step for stoichiometry.
Chemical Reaction
Chemical reactions describe how substances interact to form new products.
They involve breaking and forming bonds, changing the arrangement of atoms.
In our exercise, the chemical reaction between carbon dioxide (\(\mathrm{CO}_2\)) and lithium hydroxide (LiOH) produces lithium carbonate (\(\mathrm{Li}_2\mathrm{CO}_3\)) and water (\(\mathrm{H}_2\mathrm{O}\)).This specific reaction is vital for maintaining the environment inside a shuttle. When astronauts exhale, they produce \(\mathrm{CO}_2\).
Reacting with LiOH, \(\mathrm{CO}_2\) is converted into solid \(\mathrm{Li}_2\mathrm{CO}_3\), effectively removing it from the air.
This process is crucial for keeping the air breathable for astronauts during their mission.
Balanced Equation
Balancing chemical equations ensures that the same number of each type of atom exists on both sides of the equation. This reflects the law of conservation of mass.
In our case, we have:\[2 \mathrm{LiOH} + \mathrm{CO}_2 \rightarrow \mathrm{Li}_2\mathrm{CO}_3 + \mathrm{H}_2\mathrm{O}\]This balanced equation shows that two hydroxide ions are necessary to react with one carbon dioxide molecule.
This balance is important because it allows us to understand the exact ratios of reactants needed to fully complete the reaction without leftover elements.
In this example, two LiOH molecules react to form one \(\mathrm{Li}_2\mathrm{CO}_3\) molecule and one molecule of water. Balancing equations is a significant skill for anyone studying chemistry, as it facilitates accurate calculations and predictions in reactions.
Environmental Control System
In space missions, an environmental control system (ECS) is vital for maintaining a livable atmosphere in the spaceship or space station.
It involves complex systems that handle life-supporting tasks such as temperature regulation and air purification.For example, using LiOH pellets to absorb exhaled \(\mathrm{CO}_2\) is a crucial function of the ECS.
The system ensures that the amount of \(\mathrm{CO}_2\) does not reach harmful levels.
This is essential as too much \(\mathrm{CO}_2\) can lead to serious health issues.
By removing excess \(\mathrm{CO}_2\) and providing clean air, the ECS helps keep astronauts safe and comfortable during their mission. Understanding how these systems work is crucial, particularly in designing effective solutions that permit extended human presence in space.

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

A common demonstration in chemistry courses involves adding a tiny speck of manganese(IV) oxide to a concentrated hydrogen peroxide \(\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)\) solution. Hydrogen peroxide decomposes quite spectacularly under these conditions to produce oxygen gas and steam (water vapor). Manganese(IV) oxide is a catalyst for the decomposition of hydrogen peroxide and is not consumed in the reaction. Write the balanced equation for the decomposition reaction of hydrogen peroxide.

Which of the following statements about chemical equations is(are) true? a. When balancing a chemical equation, you can never change the coefficient in front of any chemical formula. b. The coefficients in a balanced chemical equation refer to the number of grams of reactants and products. c. In a chemical equation, the reactants are on the right and the products are on the left. d. When balancing a chemical equation, you can never change the subscripts of any chemical formula. e. In chemical reactions, matter is neither created nor destroyed so a chemical equation must have the same number of atoms on both sides of the equation.

Give the balanced equation for each of the following. a. The combustion of ethanol \(\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)\) forms carbon dioxide and water vapor. A combustion reaction refers to a reaction of a substance with oxygen gas. b. Aqueous solutions of lead(Il) nitrate and sodium phosphate are mixed, resulting in the precipitate formation of lead(II) phosphate with aqueous sodium nitrate as the other product. c. Solid zinc reacts with aqueous HCl to form aqueous zinc chloride and hydrogen gas. d. Aqueous strontium hydroxide reacts with aqueous hydrobromic acid to produce water and aqueous strontium bromide.

Arrange the following substances in order of increasing mass percent of nitrogen. \(\begin{array}{ll}{\text { a. } \mathrm{NO}} & {\text { c. } \mathrm{NH}_{3}} \\\ {\text { b. } \mathrm{N}_{2} \mathrm{O}} & {\text { d. SNH }}\end{array}\)

Vitamin A has a molar mass of 286.4 \(\mathrm{g} / \mathrm{mol}\) and a general molecular formula of \(\mathrm{C}_{x} \mathrm{H}, \mathrm{E}\) , where \(\mathrm{E}\) is an unknown element. If vitamin \(\mathrm{A}\) is 83.86\(\% \mathrm{C}\) and 10.56\(\% \mathrm{H}\) by mass, what is the molecular formula of vitamin A?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free