Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

You may have noticed that water sometimes drips from the exhaust of a car as it is running. Is this evidence that there is at least a small amount of water originally present in the gasoline? Explain.

Short Answer

Expert verified
The presence of water dripping from a car's exhaust does not necessarily indicate that there is a small amount of water originally present in the gasoline. This phenomenon occurs because water is a natural byproduct of the combustion process when hydrocarbons (gasoline) combine with oxygen to produce carbon dioxide (CO2) and water (H2O). As the water vapor travels through the cooling exhaust system, it can condense into liquid water and be expelled at the tailpipe in the form of drips.

Step by step solution

01

Understand the combustion process

In a car engine, gasoline (hydrocarbons) is burned in the presence of oxygen to release energy. This energy is then used to power the car. The combustion process can be represented by the following chemical equation: \[ C_xH_y + O_2 \rightarrow CO_2 + H_2O \] The hydrocarbon (gasoline) combines with oxygen to form carbon dioxide (CO2) and water (H2O).
02

Analyze the water formation during combustion

As seen in the combustion equation, water is a natural byproduct of the combustion process. When gasoline burns in the engine, it forms water vapor. The exhaust system then expels the leftover gases, including the water vapor.
03

Consider the role of temperature in water vapor condensation

As the water vapor travels through the exhaust system and the system cools down, it can condense into liquid water. This water is usually expelled at the tailpipe and may be observed as drips.
04

Conclusion

The presence of water dripping from a car's exhaust is not necessarily evidence that there is a small amount of water originally present in the gasoline. Instead, it can be explained by the combustion process and the formation of water vapor, which then condenses and exits the exhaust system as liquid water.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Balance the following equations: a. \(\mathrm{Ca}(\mathrm{OH})_{2}(a q)+\mathrm{H}_{3} \mathrm{PO}_{4}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)+\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(s)\) b. \(\mathrm{Al}(\mathrm{OH})_{3}(s)+\mathrm{HCl}(a q) \rightarrow \mathrm{AlCl}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l)\) c. \(\mathrm{AgNO}_{3}(a q)+\mathrm{H}_{2} \mathrm{SO}_{4}(a q) \rightarrow \mathrm{Ag}_{2} \mathrm{SO}_{4}(s)+\mathrm{HNO}_{3}(a q)\)

Balance the following equations representing combustion reactions: c. \(C_{12} \mathrm{H}_{22} \mathrm{O}_{11}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)\) d. Fe \((s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(s)\) e. \(\mathrm{FeO}(s)+\mathrm{O}_{2}(g) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(s)\)

With the advent of techniques such as scanning tunneling microscopy, it is now possible to "write" with individual atoms by manipulating and arranging atoms on an atomic surface. a. If an image is prepared by manipulating iron atoms and their total mass is \(1.05 \times 10^{-20} \mathrm{g},\) what number of iron atoms were used? b. If the image is prepared on a platinum surface that is exactly 20 platinum atoms high and 14 platinum atoms wide, what is the mass (grams) of the atomic surface? c. If the atomic surface were changed to ruthenium atoms and the same surface mass as determined in part b is used, what number of ruthenium atoms is needed to construct the surface?

Consider the following reaction: $$ 4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \longrightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(g) $$ If a container were to have 10 molecules of \(\mathrm{O}_{2}\) and 10 molecules of \(\mathrm{NH}_{3}\) initially, how many total molecules (reactants plus products) would be present in the container after this reaction goes to completion?

Adipic acid is an organic compound composed of 49.31\(\% \mathrm{C}\) , \(43.79 \% \mathrm{O},\) and the rest hydrogen. If the molar mass of adipic acid is 146.1 \(\mathrm{g} / \mathrm{mol}\) , what are the empirical and molecular formulas for adipic acid?

See all solutions

Recommended explanations on Chemistry Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free