Chapter 21: Problem 54
Draw the \(d\) -orbital splitting diagrams for the octahedral complex ions of each of the following. a. \(\mathrm{Zn}^{2+}\) b. \(\mathrm{Co}^{2+}\) (high and low spin) c. \(\mathrm{Ti}^{3+}\)
Chapter 21: Problem 54
Draw the \(d\) -orbital splitting diagrams for the octahedral complex ions of each of the following. a. \(\mathrm{Zn}^{2+}\) b. \(\mathrm{Co}^{2+}\) (high and low spin) c. \(\mathrm{Ti}^{3+}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeUse standard reduction potentials to calculate \(\mathscr{C}^{\circ}, \Delta G^{\circ},\) and \(K\) (at 298 K) for the reaction that is used in production of gold: $$2 \mathrm{Au}(\mathrm{CN})_{2}-(a q)+\mathrm{Zn}(s) \longrightarrow 2 \mathrm{Au}(s)+\mathrm{Zn}(\mathrm{CN})_{4}^{2-}(a q)$$ The relevant half-reactions are $$\begin{aligned} \operatorname{Au}(\mathrm{CN})_{2}^{-}+\mathrm{e}^{-} \longrightarrow \mathrm{Au}+2 \mathrm{CN}^{-} & \mathscr{C}^{\circ}=-0.60 \mathrm{V} \\ \mathrm{Zn}(\mathrm{CN})_{4}^{2-}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Zn}+4 \mathrm{CN}^{-} & \mathscr{C}^{\circ}=-1.26 \mathrm{V} \end{aligned}$$
When concentrated hydrochloric acid is added to a red solution containing the \(\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}\) complex ion, the solution turns blue as the tetrahedral \(\mathrm{CoCl}_{4}^{2-}\) complex ion forms. Explain this color change.
A metal ion in a high-spin octahedral complex has two more unpaired electrons than the same ion does in a low-spin octahedral complex. Name some possible metal ions for which this would be true.
For the process $$\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}^{2+}(a q)+\mathrm{Cl}^{-}(a q) \longrightarrow \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}^{+}(a q)+\mathrm{NH}_{3}(a q)$$ what would be the expected ratio of cis to trans isomers in the product?
What is the electron configuration for the transition metal ion(s) in each of the following compounds? a. \(\left(\mathrm{NH}_{4}\right)_{2}\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Cl}_{4}\right]\) b. \(\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)_{2}\right] \mathrm{I}_{2}\) c. \(\mathrm{Na}_{2}\left[\mathrm{TaF}_{7}\right]\) d. \(\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{I}_{2}\right]\left[\mathrm{PtI}_{4}\right]\) Pt forms \(+2\) and \(+4\) oxidation states in compounds.
What do you think about this solution?
We value your feedback to improve our textbook solutions.