Chapter 21: Problem 39
Give formulas for the following. a. potassium tetrachlorocobaltate(II) b. aquatricarbonylplatinum(II) bromide c. sodium dicyanobis(oxalato)ferrate(III) d. triamminechloroethylenediaminechromium(III) iodide
Chapter 21: Problem 39
Give formulas for the following. a. potassium tetrachlorocobaltate(II) b. aquatricarbonylplatinum(II) bromide c. sodium dicyanobis(oxalato)ferrate(III) d. triamminechloroethylenediaminechromium(III) iodide
All the tools & learning materials you need for study success - in one app.
Get started for freeWhat is the lanthanide contraction? How does the lanthanide contraction affect the properties of the 4\(d\) and 5\(d\) transition metals?
Almost all metals in nature are found as ionic compounds in ores instead of being in the pure state. Why? What must be done to a sample of ore to obtain a metal substance that has desirable properties?
Why are \(\mathrm{CN}^{-}\) and \(\mathrm{CO}\) toxic to humans?
Molybdenum is obtained as a by-product of copper mining or is mined directly (primary deposits are in the Rocky Mountains in Colorado). In both cases it is obtained as \(\mathrm{MoS}_{2},\) which is then converted to \(\mathrm{MoO}_{3}\) . The \(\mathrm{MoO}_{3}\) can be used directly in the production of stainless steel for high-speed tools (which accounts for about 85\(\%\) of the molybdenum used). Molybdenum can be purified by dissolving MoO \(_{3}\) in aqueous ammonia and crystallizing ammonium molybdate. Depending on conditions, either \(\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Mo}_{2} \mathrm{O}_{7}\) or \(\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \cdot 4 \mathrm{H}_{2} \mathrm{O}\) is obtained. a. Give names for \(\mathrm{MoS}_{2}\) and \(\mathrm{MoO}_{3}\) . b. What is the oxidation state of Mo in each of the com- pounds mentioned above?
Use standard reduction potentials to calculate \(\mathscr{C}^{\circ}, \Delta G^{\circ},\) and \(K\) (at 298 K) for the reaction that is used in production of gold: $$2 \mathrm{Au}(\mathrm{CN})_{2}-(a q)+\mathrm{Zn}(s) \longrightarrow 2 \mathrm{Au}(s)+\mathrm{Zn}(\mathrm{CN})_{4}^{2-}(a q)$$ The relevant half-reactions are $$\begin{aligned} \operatorname{Au}(\mathrm{CN})_{2}^{-}+\mathrm{e}^{-} \longrightarrow \mathrm{Au}+2 \mathrm{CN}^{-} & \mathscr{C}^{\circ}=-0.60 \mathrm{V} \\ \mathrm{Zn}(\mathrm{CN})_{4}^{2-}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Zn}+4 \mathrm{CN}^{-} & \mathscr{C}^{\circ}=-1.26 \mathrm{V} \end{aligned}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.