Chapter 21: Problem 22
Why are \(\mathrm{CN}^{-}\) and \(\mathrm{CO}\) toxic to humans?
Chapter 21: Problem 22
Why are \(\mathrm{CN}^{-}\) and \(\mathrm{CO}\) toxic to humans?
All the tools & learning materials you need for study success - in one app.
Get started for freeName the following coordination compounds. a. \(\operatorname{Na_t}_{4}\left[\operatorname{Ni}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]\) b. \(\mathrm{K}_{2}\left[\mathrm{CoCl}_{4}\right]\) c. \(\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right] \mathrm{SO}_{4}\) d. \(\left[\mathrm{Co}(\mathrm{en})_{2}(\mathrm{SCN}) \mathrm{Cl}\right] \mathrm{Cl}\)
For the process $$\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}^{2+}(a q)+\mathrm{Cl}^{-}(a q) \longrightarrow \mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}^{+}(a q)+\mathrm{NH}_{3}(a q)$$ what would be the expected ratio of cis to trans isomers in the product?
A coordination compound of cobalt (III) contains four ammonia molecules, one sulfate ion, and one chloride ion. Addition of aqueous \(\mathrm{BaCl}_{2}\) solution to an aqueous solution of the compound gives no precipitate. Addition of aqueous \(\mathrm{AgNO}_{3}\) to an aqueous solution of the compound produces a white precipitate. Propose a structure for this coordination compound.
Which of the following molecules exhibit(s) optical isomerism? a. \(c i s-P t\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\) b. trans-Ni(en) \(_{2} \mathrm{Br}_{2}\) (en is ethylenediamine) c. \(c i s-\mathrm{Ni}(\mathrm{en})_{2} \mathrm{Br}_{2}(\text { en is ethylenediamine })\)
Nickel can be purified by producing the volatile compound nickel tetracarbonyl. Nickel is the only metal that reacts with carbon monoxide at room temperature. Assuming this compound is overall neutral, what is the oxidation state of Ni in the compound? Deduce the formula of the compound.
What do you think about this solution?
We value your feedback to improve our textbook solutions.