Chapter 20: Problem 7
In most compounds, the solid phase is denser than the liquid phase. Why isn't this true for water?
Chapter 20: Problem 7
In most compounds, the solid phase is denser than the liquid phase. Why isn't this true for water?
All the tools & learning materials you need for study success - in one app.
Get started for freeHydrazine is somewhat toxic. Use the following half-reactions to explain why household bleach (highly alkaline solutions of sodium hypochlorite) should not be mixed with household ammonia or glass cleansers that contain ammonia. $$ \mathrm{ClO}^{-}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{OH}^{-}+\mathrm{Cl}^{-} \quad \mathscr{E}^{\circ}=0.90 \mathrm{V} $$ $$ \mathrm{N}_{2} \mathrm{H}_{4}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{NH}_{3}+2 \mathrm{OH}^{-} \quad \mathscr{E}^{\circ}=-0.10 \mathrm{V} $$
Explain why HF is a weak acid, whereas HCl, HBr, and HI are all strong acids.
The compound with the formula TII_ is a black solid. Given the following standard reduction potentials, \(\mathrm{T} 1^{3+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Tl}^{+}\) \(\mathscr{E}^{\circ}=1.25 \mathrm{V}\) \(\mathrm{I}_{3}^{-}+2 \mathrm{e}^{-} \longrightarrow 3 \mathrm{I}^{-}\) \(\mathscr{E}^{\circ}=0.55 \mathrm{V}\)
Fluorine reacts with sulfur to form several different covalent compounds. Three of these compounds are \(\mathrm{SF}_{2}, \mathrm{SF}_{4},\) and \(\mathrm{SF}_{6} .\) Draw the Lewis structures for these compounds, and predict the molecular structures (including bond angles). Would you expect \(\mathrm{OF}_{4}\) to be a stable compound?
Use bond energies to estimate the maximum wavelength of light that will cause the reaction $$ \mathrm{O}_{3} \stackrel{\mathrm{h}}{\longrightarrow} \mathrm{O}_{2}+\mathrm{O} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.