Chapter 20: Problem 58
Trisodium phosphate (TSP) is an effective grease remover. Like many cleaners, TSP acts as a base in water. Write a balanced equation to account for this basic behavior.
Chapter 20: Problem 58
Trisodium phosphate (TSP) is an effective grease remover. Like many cleaners, TSP acts as a base in water. Write a balanced equation to account for this basic behavior.
All the tools & learning materials you need for study success - in one app.
Get started for freeMany oxides of nitrogen have positive values for the standard free energy of formation. Using NO as an example, explain why this is the case.
Sodium tripolyphosphate \(\left(\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}\right)\) is used in many synthetic detergents. Its major effect is to soften the water by complexing \(\mathrm{Mg}^{2+}\) and \(\mathrm{Ca}^{2+}\) ions. It also increases the efficiency of surfactants, or wetting agents, that lower a liquid's surface tension. The pK value for the formation of \(\mathrm{MgP}_{3} \mathrm{O}_{10}^{3-}\) is \(-8.60 .\) The reaction is $$ \mathrm{Mg}^{2+}(a q)+\mathrm{P}_{3} \mathrm{O}_{10}^{5-}(a q) \rightleftharpoons \mathrm{MgP}_{3} \mathrm{O}_{10}^{3-}(a q) $$ Calculate the concentration of \(\mathrm{Mg}^{2+}\) in a solution that was originally \(50 . \mathrm{ppm} \mathrm{Mg}^{2+}(50 . \mathrm{mg} / \mathrm{L} \text { of solution) after } 40 . \mathrm{g} \text { of }\) \(\mathrm{Na}_{5} \mathrm{P}_{3} \mathrm{O}_{10}\) is added to 1.0 \(\mathrm{L}\) of the solution.
Beryllium shows some covalent characteristics in some of its compounds, unlike the other alkaline earth compounds. Give a possible explanation for this phenomenon.
Hydrazine is somewhat toxic. Use the following half-reactions to explain why household bleach (highly alkaline solutions of sodium hypochlorite) should not be mixed with household ammonia or glass cleansers that contain ammonia. $$ \mathrm{ClO}^{-}+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{OH}^{-}+\mathrm{Cl}^{-} \quad \mathscr{E}^{\circ}=0.90 \mathrm{V} $$ $$ \mathrm{N}_{2} \mathrm{H}_{4}+2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{NH}_{3}+2 \mathrm{OH}^{-} \quad \mathscr{E}^{\circ}=-0.10 \mathrm{V} $$
The United States Public Health Service (USPHS) recommends the fluoridation of water as a means for preventing tooth decay. The recommended concentration is 1 \(\mathrm{mg} \mathrm{F}^{-} / \mathrm{L}\) . The presence of calcium ions in hard water can precipitate the added fluoride. What is the maximum molarity of calcium ions in hard water if the fluoride concentration is at the USPHS recommended level? \(\left(K_{\mathrm{sp}} \text { for } \mathrm{CaF}_{2}=4.0 \times 10^{-11} .\right)\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.