Chapter 19: Problem 14
A recent study concluded that any amount of radiation exposure can cause biological damage. Explain the differences between the two models of radiation damage, the linear model and the threshold model.
Chapter 19: Problem 14
A recent study concluded that any amount of radiation exposure can cause biological damage. Explain the differences between the two models of radiation damage, the linear model and the threshold model.
All the tools & learning materials you need for study success - in one app.
Get started for freePredict whether each of the following nuclides is stable or unstable (radioactive). If the nuclide is unstable, predict the type of radioactivity you would expect it to exhibit. a. \(_{19}^{45} \mathrm{K}\) b. \(_{56}^{26} \mathrm{Fe}\) c. \(_{20}^{11} \mathrm{Na}\) d. \(_{194}^{81} \mathrm{TI}\)
Scientists have estimated that the earth's crust was formed 4.3 billion years ago. The radioactive nuclide \(176 \mathrm{Lu},\) which decays to 176 \(\mathrm{Hf}\) , was used to estimate this age. The half-life of 176 \(\mathrm{Lu}\) is 37 billion years. How are ratios of \(^{176} \mathrm{Lu}\) to 176 \(\mathrm{Hf}\) utilized to date very old rocks?
A reported synthesis of the transuranium element bohrium (Bh) involved the bombardment of berkelium-249 with neon-22 to produce bohrium-267. Write a nuclear reaction for this synthesis. The half-life of bohrium-267 is 15.0 seconds. If 199 atoms of bohrium-267 could be synthesized, how much time would elapse before only 11 atoms of bohrium-267 remain? What is the expected electron configuration of elemental bohrium?
A chemist studied the reaction mechanism for the reaction $$ 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \longrightarrow 2 \mathrm{NO}_{2}(g) $$ by reacting \(\mathrm{N}^{16} \mathrm{O}\) with \(^{18} \mathrm{O}_{2}\) . If the reaction mechanism is $$ \begin{aligned} \mathrm{NO}+\mathrm{O}_{2} & \rightleftharpoons \mathrm{NO}_{3}(\text { fast equilibrium }) \\ \mathrm{NO}_{3}+\mathrm{NO} & \longrightarrow 2 \mathrm{NO}_{2}(\text { slow }) \end{aligned} $$ what distribution of \(^{18} \mathrm{O}\) would you expect in the NO \(_{2} ?\) Assume that \(\mathrm{N}\) is the central atom in \(\mathrm{NO}_{3},\) assume only \(\mathrm{N}^{16} \mathrm{O}^{16} \mathrm{O}_{2}\) forms, and assume stoichiometric amounts of reactants are combined.
A small atomic bomb releases energy equivalent to the deto- nation of \(20,000\) tons of TNT; a ton of TNT releases \(4 \times 10^{9} \mathrm{J}\) of energy when exploded. Using \(2 \times 10^{13} \mathrm{J} / \mathrm{mol}\) as the energy released by fission of \(^{235} \mathrm{U}\) , approximately what mass of \(^{235} \mathrm{U}\) undergoes fission in this atomic bomb?
What do you think about this solution?
We value your feedback to improve our textbook solutions.