Chapter 18: Problem 7
Sketch a cell that forms iron metal from iron(II) while changing chromium metal to chromium(III). Calculate the voltage, show the electron flow, label the anode and cathode, and balance the overall cell equation.
Chapter 18: Problem 7
Sketch a cell that forms iron metal from iron(II) while changing chromium metal to chromium(III). Calculate the voltage, show the electron flow, label the anode and cathode, and balance the overall cell equation.
All the tools & learning materials you need for study success - in one app.
Get started for freeAn aqueous solution of an unknown salt of ruthenium is electrolyzed by a current of 2.50 A passing for 50.0 min. If 2.618 g Ru is produced at the cathode, what is the charge on the ruthenium ions in solution?
What mass of each of the following substances can be produced in 1.0 h with a current of 15 A? a. \(\mathrm{Co}\) from aqueous \(\mathrm{Co}^{2+}\) b. \(\mathrm{Hf}\) from aqueous \(\mathrm{Hf}^{4+}\) c. \(\mathrm{I}_{2}\) from aqueous \(\mathrm{KI}\) d. \(\mathrm{Cr}\) from molten \(\mathrm{CrO}_{3}\)
Specify which of the following equations represent oxidation–reduction reactions, and indicate the oxidizing agent, the reducing agent, the species being oxidized, and the species being reduced. a. \(\mathrm{CH}_{4}(g)+\mathrm{H}_{2} \mathrm{O}(g) \rightarrow \mathrm{CO}(g)+3 \mathrm{H}_{2}(g)\) b. \(2 \mathrm{AgNO}_{3}(a q)+\mathrm{Cu}(s) \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(a q)+2 \mathrm{Ag}(s)\) c. \(\mathrm{Zn}(s)+2 \mathrm{HCl}(a q) \rightarrow \mathrm{ZnCl}_{2}(a q)+\mathrm{H}_{2}(g)\) d. \(2 \mathrm{H}^{+}(a q)+2 \mathrm{CrO}_{4}^{2-}(a q) \rightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+\mathrm{H}_{2} \mathrm{O}(l)\)
An electrochemical cell consists of a standard hydrogen electrode and a copper metal electrode. a. What is the potential of the cell at \(25^{\circ} \mathrm{C}\) if the copper electrode is placed in a solution in which \(\left[\mathrm{Cu}^{2+}\right]=\) \(2.5 \times 10^{-4} \mathrm{M} ?\) b. The copper electrode is placed in a solution of unknown \(\left[\mathrm{Cu}^{2+}\right] .\) The measured potential at \(25^{\circ} \mathrm{C}\) is 0.195 \(\mathrm{V}\) . What is \(\left[\mathrm{Cu}^{2+}\right] ?\) (Assume \(\mathrm{Cu}^{2+}\) is reduced.)
An electrochemical cell consists of a silver metal electrode immersed in a solution with [Ag \(^{+} ]=1.0 M\) separated by a porous disk from a copper metal electrode. If the copper electrode is placed in a solution of 5.0\(M \mathrm{NH}_{3}\) that is also 0.010 \(\mathrm{M}\) in \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+},\) what is the cell potential at \(25^{\circ} \mathrm{C} ?\) $$\begin{aligned} \mathrm{Cu}^{2+}(a q)+4 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(a q) & \\\ & K=1.0 \times 10^{13} \end{aligned}$$
What do you think about this solution?
We value your feedback to improve our textbook solutions.