Chapter 18: Problem 4
In making a specific galvanic cell, explain how one decides on the electrodes and the solutions to use in the cell.
Chapter 18: Problem 4
In making a specific galvanic cell, explain how one decides on the electrodes and the solutions to use in the cell.
All the tools & learning materials you need for study success - in one app.
Get started for freeSketch the galvanic cells based on the following half- reactions. Show the direction of electron flow, show the direction of ion migration through the salt bridge, and identify the cathode and anode. Give the overall balanced equation, and determine \(\mathscr{E}^{\circ}\) for the galvanic cells. Assume that all concentrations are 1.0 \(M\) and that all partial pressures are 1.0 atm. a. \(\mathrm{Cl}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Cl}^{-} \quad \mathscr{E}^{\circ}=1.36 \mathrm{V}\) \(\mathrm{Br}_{2}+2 \mathrm{e}^{-} \rightarrow 2 \mathrm{Br}^{-} \quad \mathscr{E}^{\circ}=1.09 \mathrm{V}\) b. \(\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \quad \mathscr{E}^{\circ}=1.51 \mathrm{V}\) \(\mathrm{IO}_{4}^{-}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{IO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O} \quad \quad \mathscr{E}^{\circ}=1.60 \mathrm{V}\)
You have a concentration cell with Cu electrodes and \(\left[\mathrm{Cu}^{2+}\right]=1.00 M(\text { right side })\) and \(1.0 \times 10^{-4} M(\text { left side })\) a. Calculate the potential for this cell at \(25^{\circ} \mathrm{C}\) b. The \(\mathrm{Cu}^{2+}\) ion reacts with \(\mathrm{NH}_{3}\) to form \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}\) by the following equation: $$\begin{aligned} \mathrm{Cu}^{2+}(a q)+4 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(a q) & \\\ & K=1.0 \times 10^{13} \end{aligned}$$ Calculate the new cell potential after enough \(\mathrm{NH}_{3}\) is added to the left cell compartment such that at equilibrium \(\left[\mathrm{NH}_{3}\right]=2.0 \mathrm{M} .\)
Under standard conditions, what reaction occurs, if any, when each of the following operations is performed? a. Crystals of \(\mathrm{I}_{2}\) are added to a solution of \(\mathrm{NaCl}\) . b. \(\mathrm{Cl}_{2}\) gas is bubbled into a solution of \(\mathrm{Nal}\). c. A silver wire is placed in a solution of \(\mathrm{CuCl}_{2}\) d. An acidic solution of \(\mathrm{FeSO}_{4}\) is exposed to air. For the reactions that occur, write a balanced equation and calculate \(\mathscr{E}^{\circ}, \Delta G^{\circ},\) and \(K\) at \(25^{\circ} \mathrm{C}\)
A solution containing \(\mathrm{Pt}^{4+}\) is electrolyzed with a current of 4.00 \(\mathrm{A} .\) How long will it take to plate out 99\(\%\) of the platinum in 0.50 \(\mathrm{L}\) of a \(0.010-M\) solution of \(\mathrm{Pt}^{4+} ?\)
Three electrochemical cells were connected in series so that the same quantity of electrical current passes through all three cells. In the first cell, 1.15 g chromium metal was deposited from a chromium (III) nitrate solution. In the second cell, 3.15 \(\mathrm{g}\) osmium was deposited from a solution made of \(\mathrm{Os}^{n+}\) and nitrate ions. What is the name of the salt? In the third cell, the electrical charge passed through a solution containing \(\mathrm{X}^{2+}\) ions caused deposition of 2.11 \(\mathrm{g}\) metallic \(\mathrm{X}\) . What is the electron configuration of \(\mathrm{X} ?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.