Chapter 18: Problem 29
When jump-starting a car with a dead battery, the ground jumper should be attached to a remote part of the engine block. Why?
Chapter 18: Problem 29
When jump-starting a car with a dead battery, the ground jumper should be attached to a remote part of the engine block. Why?
All the tools & learning materials you need for study success - in one app.
Get started for freeWhen aluminum foil is placed in hydrochloric acid, nothing happens for the first 30 seconds or so. This is followed by vigorous bubbling and the eventual disappearance of the foil. Explain these observations.
Consider the cell described below: $$\mathrm{Zn}\left|\mathrm{Zn}^{2+}(1.00 M)\right|\left|\mathrm{Ag}^{+}(1.00 M)\right| \mathrm{Ag}$$ Calculate the cell potential after the reaction has operated long enough for the \(\left[\mathrm{Zn}^{2+}\right]\) to have changed by 0.20 \(\mathrm{mol} / \mathrm{L}\) . (Assume \(T=25^{\circ} \mathrm{C} . )\)
An electrochemical cell consists of a silver metal electrode immersed in a solution with [Ag \(^{+} ]=1.0 M\) separated by a porous disk from a copper metal electrode. If the copper electrode is placed in a solution of 5.0\(M \mathrm{NH}_{3}\) that is also 0.010 \(\mathrm{M}\) in \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+},\) what is the cell potential at \(25^{\circ} \mathrm{C} ?\) $$\begin{aligned} \mathrm{Cu}^{2+}(a q)+4 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(a q) & \\\ & K=1.0 \times 10^{13} \end{aligned}$$
What reactions take place at the cathode and the anode when each of the following is electrolyzed? (Assume standard conditions.) a. 1.0 \(M \mathrm{NiBr}_{2}\) solution b. 1.0 \(M \mathrm{AlF}_{3}\) solution c. 1.0 \(M \mathrm{MnI}_{2}\) solution
A galvanic cell consists of a standard hydrogen electrode and a copper electrode immersed in a Cu(NO \(_{3} )_{2}(a q)\) solution. If you wish to construct a calibration curve to show how the cell potential varies with \(\left[\mathrm{Cu}^{2+}\right],\) what should you plot to obtain a straight line? What will be the slope of this line?
What do you think about this solution?
We value your feedback to improve our textbook solutions.