Chapter 18: Problem 17
Define oxidation and reduction in terms of both change in oxidation number and electron loss or gain.
Chapter 18: Problem 17
Define oxidation and reduction in terms of both change in oxidation number and electron loss or gain.
All the tools & learning materials you need for study success - in one app.
Get started for freeWhat mass of each of the following substances can be produced in 1.0 h with a current of 15 A? a. \(\mathrm{Co}\) from aqueous \(\mathrm{Co}^{2+}\) b. \(\mathrm{Hf}\) from aqueous \(\mathrm{Hf}^{4+}\) c. \(\mathrm{I}_{2}\) from aqueous \(\mathrm{KI}\) d. \(\mathrm{Cr}\) from molten \(\mathrm{CrO}_{3}\)
Consider a galvanic cell based on the following half-reactions: $$\begin{array}{ll}{\text {}} & { \mathscr{E}^{\circ}(\mathbf{V}) } \\ \hline {\mathrm{La}^{3+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{La}} & {-2.37} \\\ {\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}} & {-0.44}\end{array}$$ a. What is the expected cell potential with all components in their standard states? b. What is the oxidizing agent in the overall cell reaction? c. What substances make up the anode compartment? d. In the standard cell, in which direction do the electrons flow? e. How many electrons are transferred per unit of cell reaction? f. If this cell is set up at \(25^{\circ} \mathrm{C}\) with \(\left[\mathrm{Fe}^{2+}\right]=2.00 \times 10^{-4} M\) and \(\left[\mathrm{La}^{3+}\right]=3.00 \times 10^{-3} M,\) what is the expected cell potential?
The overall reaction in the lead storage battery is \(\mathrm{Pb}(s)+\mathrm{PbO}_{2}(s)+2 \mathrm{H}^{+}(a q)+2 \mathrm{HSO}_{4}^{-}(a q) \longrightarrow\) \(2 \mathrm{PbSO}_{4}(s)+2 \mathrm{H}_{2} \mathrm{O}(l)\) Calculate \(\mathscr{E}\) at \(25^{\circ} \mathrm{C}\) for this battery when \(\left[\mathrm{H}_{2} \mathrm{SO}_{4}\right]=4.5 \mathrm{M}\), that is, \(\left[\mathrm{H}^{+}\right]=\left[\mathrm{HSO}_{4}^{-}\right]=4.5 \mathrm{M} . \mathrm{At} 25^{\circ} \mathrm{C}, \mathscr{E}^{\circ}=2.04 \mathrm{V}\) for the lead storage battery.
Estimate \(\mathscr{E}^{\circ}\) for the half-reaction $$2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}+2 \mathrm{OH}^{-}$$ given the following values of \(\Delta G_{\mathrm{f}}^{\circ} :\) $$\quad\quad\quad \mathrm{H}_{2} \mathrm{O}(l)=-237 \mathrm{kJ} / \mathrm{mol}$$ $$\mathrm{H}_{2}(g)=0.0$$ $$\quad\quad\quad \mathrm{OH}^{-}(a q)=-157 \mathrm{kJ} / \mathrm{mol}$$ $$\quad \mathrm{e}^{-}=0.0$$ Compare this value of \(\mathscr{E}^{\circ}\) with the value of \(\mathscr{E}^{\circ}\) given in Table 18.1
The general rule for salt bridges is that anions flow to the anode and cations flow to the cathode. Explain why this is true.
What do you think about this solution?
We value your feedback to improve our textbook solutions.