Chapter 18: Problem 16
Is the following statement true or false? Concentration cells work because standard reduction potentials are dependent on concentration. Explain.
Chapter 18: Problem 16
Is the following statement true or false? Concentration cells work because standard reduction potentials are dependent on concentration. Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeIt took 150 . s for a current of 1.25 \(\mathrm{A}\) to plate out 0.109 g of a metal from a solution containing its cations. Show that it is not possible for the cations to have a charge of \(1+.\)
Balance the following oxidation–reduction reactions that occur in basic solution using the half-reaction method. a. \(\mathrm{PO}_{3}^{3-}(a q)+\mathrm{MnO}_{4}^{-}(a q) \rightarrow \mathrm{PO}_{4}^{3-}(a q)+\mathrm{MnO}_{2}(s)\) b. \(\operatorname{Mg}(s)+\mathrm{OCl}^{-}(a q) \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}(s)+\mathrm{Cl}^{-}(a q)\) c. \(\mathrm{H}_{2} \mathrm{CO}(a q)+\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}+(a q) \rightarrow\) $$\mathrm{HCO}_{3}(a q)+\mathrm{Ag}(s)+\mathrm{NH}_{3}(a q)$$
An electrochemical cell consists of a silver metal electrode immersed in a solution with [Ag \(^{+} ]=1.0 M\) separated by a porous disk from a copper metal electrode. If the copper electrode is placed in a solution of 5.0\(M \mathrm{NH}_{3}\) that is also 0.010 \(\mathrm{M}\) in \(\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+},\) what is the cell potential at \(25^{\circ} \mathrm{C} ?\) $$\begin{aligned} \mathrm{Cu}^{2+}(a q)+4 \mathrm{NH}_{3}(a q) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(a q) & \\\ & K=1.0 \times 10^{13} \end{aligned}$$
An electrochemical cell consists of a nickel metal electrode immersed in a solution with \(\left[\mathrm{Ni}^{2+}\right]=1.0 M\) separated by a porous disk from an aluminum metal electrode. a. What is the potential of this cell at \(25^{\circ} \mathrm{C}\) if the aluminum electrode is placed in a solution in which \(\left[\mathrm{Al}^{3+}\right]=7.2 \times 10^{-3} M?\) b. When the aluminum electrode is placed in a certain solution in which \(\left[\mathrm{Al}^{3+}\right]\) is unknown, the measured cell potential at \(25^{\circ} \mathrm{C}\) is 1.62 \(\mathrm{V}\) . Calculate \(\left[\mathrm{Al}^{3+}\right]\) in the unknown solution. (Assume Al is oxidized.)
A disproportionation reaction involves a substance that acts as both an oxidizing and a reducing agent, producing higher and lower oxidation states of the same element in the products. Which of the following disproportionation reactions are spontaneous under standard conditions? Calculate \(\Delta G^{\circ}\) and \(K\) at \(25^{\circ} \mathrm{C}\) for those reactions that are spontaneous under standard conditions. a. \(2 \mathrm{Cu}^{+}(a q) \longrightarrow \mathrm{Cu}^{2+}(a q)+\mathrm{Cu}(s)\) b. \(3 \mathrm{Fe}^{2+}(a q) \longrightarrow 2 \mathrm{Fe}^{3+}(a q)+\mathrm{Fe}(s)\) c. \(\mathrm{HClO}_{2}(a q) \longrightarrow \mathrm{ClO}_{3}^{-}(a q)+\mathrm{HClO}(a q) \quad\) (unbalanced) Use the half-reactions: \(\mathrm{ClO}_{3}^{-}+3 \mathrm{H}^{+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{HClO}_{2}+\mathrm{H}_{2} \mathrm{O} \quad \mathscr{E}^{\circ}=1.21 \mathrm{V}\) \(\mathrm{HClO}_{2}+2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{HClO}+\mathrm{H}_{2} \mathrm{O} \quad \mathscr{E}^{\circ}=1.65 \mathrm{V}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.