Chapter 18: Problem 147
The measurement of \(\mathrm{pH}\) using a glass electrode obeys the Nernst equation. The typical response of a pH meter at \(25.00^{\circ} \mathrm{C}\) is given by the equation $$\mathscr{E}_{\text { meas }}=\mathscr{E}_{\text { ref }}+0.05916 \mathrm{pH}$$ where \(\mathscr{E}_{\text { ref }}\) contains the potential of the reference electrode and all other potentials that arise in the cell that are not related to the hydrogen ion concentration. Assume that \(\mathscr{E}_{\mathrm{ref}}=0.250 \mathrm{V}\) and that \(\mathscr{E}_{\text { meas }}=0.480 \mathrm{V}\) a. What is the uncertainty in the values of \(\mathrm{pH}\) and \(\left[\mathrm{H}^{+}\right]\) if the nncertainty in the measured potential is \(+1 \mathrm{mV}\) \(( \pm 0.001 \mathrm{V}) ?\) b. To what precision must the potential be measured for the uncertainty in \(\mathrm{pH}\) to be \(\pm 0.02 \mathrm{pH}\) unit?
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.