Chapter 18: Problem 136
An electrochemical cell consists of a silver metal electrode immersed in a solution with \(\left[\mathrm{Ag}^{+}\right]=1.00 M\) separated by a porous disk from a compartment with a copper metal electrode immersed in a solution of 10.00\(M \mathrm{NH}_{3}\) that also contains \(2.4 \times 10^{-3} \mathrm{M} \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+} .\) The equilibrium between \(\mathrm{Cu}^{2+}\) and \(\mathrm{NH}_{3}\) is: $$\mathrm{Cu}^{2+}(\mathrm{aq})+4 \mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}^{2+}(\mathrm{aq}) \qquad K=1.0 \times 10^{13}$$ and the two cell half-reactions are: $$\begin{array}{rl}{\mathrm{Ag}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{Ag}} & {\mathscr{E}^{\circ}=0.80 \mathrm{V}} \\ {\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Cu}} & {\mathscr{E}^{\circ}=0.34 \mathrm{V}}\end{array}$$ Assuming \(\mathrm{Ag}^{+}\) is reduced, what is the cell potential at \(25^{\circ} \mathrm{C} ?\)
Short Answer
Step by step solution
Key Concepts
These are the key concepts you need to understand to accurately answer the question.